
V4L2: multiple streams

Guennadi Liakhovetski
<g.liakhovetski@gmx.de>



ELC 2016

Background: CSI-2 data 
multiplexing

● Data on MIPI CSI-2 (and CSI-3) buses is transferred in frames.

● Each frame has a header, which contains a byte, describing the 
“kind” of data, contained in the frame.

● 2 bits in that byte define a Virtual Channel. A CSI-2 device can 
send data on up to 4 virtual channels.

● 6 bits define a Data Type. Many data types are defined by the 
standard. Some are reserved. Several codes are used for 
user-defined data-types.



ELC 2016

Goal design

Camera

source 1 +
metadata

source 2 +
metadata

Bridge

source 1

source 1 metadata

source 2

CSI-2

● The goal is to control and capture multiple streams 
independently.

● Disregarding technical design, an example representation can 
look as follows, assuming, that each source has associated 
metadata:

source 2 metadata



ELC 2016

Example: 3D camera

● 2 sensors: depth and image.

● Sensors use different CSI-2 virtual channels.

● Sensors send image data and metadata, using different CSI-2 
data types.

● Sensors must be coupled for calibration and synchronisation.



ELC 2016

camera

Proposed implementation

subdev
(source 2)

entity

subdev
(mux)

bridge

subdev
(demux)

video-device
/dev/video0

entity
subdev

(source 1)

entity

entity

buffer queue
(source 1)

buffer queue
(source 1
metadata)

buffer queue
(source 2)

buffer queue
(source 2
metadata)

video-device
/dev/video2

video-device
/dev/video3

entity

video-device
/dev/video1

entity

entity

entity



ELC 2016

Discussion: camera

● Some sensors may stream multiple image data types 
simultaneously, e.g. Bayer and JPEG. In such cases additional 
subdevices have to be implemented, e.g. a JPEG compressor.

● The internal camera topology is hardware-specific.

● If metadata is not configurable, its explicit configuration within 
subdevices can be omitted.

● Each sink pad on the multiplexer subdevice is configured for 
one data type and virtual channel.



ELC 2016

Discussion: bridge

● Each data type on each virtual channel has to be made 
available on a separate video device node.

● The number of video nodes corresponds to the maximum 
number of streams, that the bridge can support. It can be large, 
especially if there are multiple bridge instances on the system.



ELC 2016

Discussion: mux / demux

● The link between the multiplexer and the demultiplexer is 
configured with a fixed format.

● An API can be implemented for configuration and validation of 
such multiplexed links.



ELC 2016

V4L2 modifications

● Video devices will link to a demultiplexer subdevice. We will 
configure those links for specific streams, that we want to 
capture, by setting a virtual channel number on respective 
demultiplexer pads. This is the only V4L2 extension, that we 
need. The respective location in the chart is marked red.

● Optionally an explicit V4L2 mux/demux API could be 
implemented for configuration and validation of multiplexed 
links.

● Multiple buffer queues per video device could be considered as 
well, which would eliminate large numbers of video nodes.



ELC 2016

Discussion: processing unit

Camera

subdev
(source 1)

entity

subdev
(mux)

subdev
(source 2)

entity

Bridge

subdev
(process)

video-
device

/dev/video0

entity
subdev
(demux)

buffer
queue

entity

● Some processing units can process multiple streams from 
multiple sources:

entity
video-
device

/dev/video1

entity

buffer
queue

entity


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

