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Background: CSI-2 data 
multiplexing

● Data on MIPI CSI-2 (and CSI-3) buses is transferred in frames.

● Each frame has a header, which contains a byte, describing the 
“kind” of data, contained in the frame.

● 2 bits in that byte define a Virtual Channel. A CSI-2 device can 
send data on up to 4 virtual channels.

● 6 bits define a Data Type. Many data types are defined by the 
standard. Some are reserved. Several codes are used for 
user-defined data-types.
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Goal design
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● The goal is to control and capture multiple streams 
independently.

● Disregarding technical design, an example representation can 
look as follows, assuming, that each source has associated 
metadata:

source 2 metadata
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Example: 3D camera

● 2 sensors: depth and image.

● Sensors use different CSI-2 virtual channels.

● Sensors send image data and metadata, using different CSI-2 
data types.

● Sensors must be coupled for calibration and synchronisation.
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Discussion: camera

● Some sensors may stream multiple image data types 
simultaneously, e.g. Bayer and JPEG. In such cases additional 
subdevices have to be implemented, e.g. a JPEG compressor.

● The internal camera topology is hardware-specific.

● If metadata is not configurable, its explicit configuration within 
subdevices can be omitted.

● Each sink pad on the multiplexer subdevice is configured for 
one data type and virtual channel.
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Discussion: bridge

● Each data type on each virtual channel has to be made 
available on a separate video device node.

● The number of video nodes corresponds to the maximum 
number of streams, that the bridge can support. It can be large, 
especially if there are multiple bridge instances on the system.
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Discussion: mux / demux

● The link between the multiplexer and the demultiplexer is 
configured with a fixed format.

● An API can be implemented for configuration and validation of 
such multiplexed links.
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V4L2 modifications

● Video devices will link to a demultiplexer subdevice. We will 
configure those links for specific streams, that we want to 
capture, by setting a virtual channel number on respective 
demultiplexer pads. This is the only V4L2 extension, that we 
need. The respective location in the chart is marked red.

● Optionally an explicit V4L2 mux/demux API could be 
implemented for configuration and validation of multiplexed 
links.

● Multiple buffer queues per video device could be considered as 
well, which would eliminate large numbers of video nodes.
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Discussion: processing unit
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● Some processing units can process multiple streams from 
multiple sources:
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