
LINUX DVB API Version 3

Copyright 2002, 2003 Convergence GmbH

Written by Dr. Ralph J.K. Metzler
<rjkm@metzlerbros.de>

and Dr. Marcus O.C. Metzler
<mocm@metzlerbros.de>

24/07/2003
V 1.0.0

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version pub-
lished by the Free Software Foundation. A copy of the license is included in the chapter
entitled ”GNU Free Documentation License”.

Contents

1 Introduction 1
1.1 What you need to know . 1
1.2 History . 1
1.3 Overview . 2
1.4 Linux DVB Devices . 3
1.5 API include files . 3

2 DVB Frontend API 5
2.1 Frontend Data Types . 5

2.1.1 frontend type . 5
2.1.2 frontend capabilities . 5
2.1.3 frontend information . 6
2.1.4 diseqc master command . 6
2.1.5 diseqc slave reply . 7
2.1.6 SEC voltage . 7
2.1.7 SEC continuous tone . 7
2.1.8 SEC tone burst . 7
2.1.9 frontend status . 7
2.1.10 frontend parameters . 8
2.1.11 frontend events . 10

2.2 Frontend Function Calls . 11
2.2.1 open() . 11
2.2.2 close() . 11
2.2.3 FE READ STATUS . 12
2.2.4 FE READ BER . 12
2.2.5 FE READ SNR . 13
2.2.6 FE READ SIGNAL STRENGTH 13
2.2.7 FE READ UNCORRECTED BLOCKS 14
2.2.8 FE SET FRONTEND . 14
2.2.9 FE GET FRONTEND . 15
2.2.10 FE GET EVENT . 15
2.2.11 FE GET INFO . 16
2.2.12 FE DISEQC RESET OVERLOAD 16
2.2.13 FE DISEQC SEND MASTER CMD 17
2.2.14 FE DISEQC RECV SLAVE REPLY 17
2.2.15 FE DISEQC SEND BURST 18
2.2.16 FE SET TONE . 18
2.2.17 FE SET VOLTAGE . 19

i

CONTENTS CONTENTS

2.2.18 FE ENABLE HIGH LNB VOLTAGE 19

3 DVB Demux Device 21
3.1 Demux Data Types . 21

3.1.1 dmx output t . 21
3.1.2 dmx input t . 21
3.1.3 dmx pes type t . 21
3.1.4 dmx event t . 22
3.1.5 dmx scrambling status t . 22
3.1.6 struct dmx filter . 22
3.1.7 struct dmx sct filter params 22
3.1.8 struct dmx pes filter params 22
3.1.9 struct dmx event . 23
3.1.10 struct dmx stc . 23

3.2 Demux Function Calls . 24
3.2.1 open() . 24
3.2.2 close() . 24
3.2.3 read() . 25
3.2.4 write() . 26
3.2.5 DMX START . 26
3.2.6 DMX STOP . 27
3.2.7 DMX SET FILTER . 27
3.2.8 DMX SET PES FILTER . 28
3.2.9 DMX SET BUFFER SIZE 28
3.2.10 DMX GET EVENT . 29
3.2.11 DMX GET STC . 29

4 DVB Video Device 31
4.1 Video Data Types . 31

4.1.1 video format t . 31
4.1.2 video display format t . 31
4.1.3 video stream source . 32
4.1.4 video play state . 32
4.1.5 struct video event . 32
4.1.6 struct video status . 32
4.1.7 struct video still picture . 33
4.1.8 video capabilities . 33
4.1.9 video system . 33
4.1.10 struct video highlight . 34
4.1.11 video SPU . 34
4.1.12 video SPU palette . 34
4.1.13 video NAVI pack . 35
4.1.14 video attributes . 35

4.2 Video Function Calls . 36
4.2.1 open() . 36
4.2.2 close() . 36
4.2.3 write() . 37
4.2.4 VIDEO STOP . 37
4.2.5 VIDEO PLAY . 38
4.2.6 VIDEO FREEZE . 38

ii

CONTENTS CONTENTS

4.2.7 VIDEO CONTINUE . 38
4.2.8 VIDEO SELECT SOURCE 39
4.2.9 VIDEO SET BLANK . 39
4.2.10 VIDEO GET STATUS . 40
4.2.11 VIDEO GET EVENT . 40
4.2.12 VIDEO SET DISPLAY FORMAT 41
4.2.13 VIDEO STILLPICTURE 41
4.2.14 VIDEO FAST FORWARD 42
4.2.15 VIDEO SLOWMOTION . 42
4.2.16 VIDEO GET CAPABILITIES 42
4.2.17 VIDEO SET ID . 43
4.2.18 VIDEO CLEAR BUFFER 43
4.2.19 VIDEO SET STREAMTYPE 44
4.2.20 VIDEO SET FORMAT . 44
4.2.21 VIDEO SET SYSTEM . 44
4.2.22 VIDEO SET HIGHLIGHT 45
4.2.23 VIDEO SET SPU . 45
4.2.24 VIDEO SET SPU PALETTE 46
4.2.25 VIDEO GET NAVI . 46
4.2.26 VIDEO SET ATTRIBUTES 46

5 DVB Audio Device 49
5.1 Audio Data Types . 49

5.1.1 audio stream source t . 49
5.1.2 audio play state t . 49
5.1.3 audio channel select t . 50
5.1.4 struct audio status . 50
5.1.5 struct audio mixer . 50
5.1.6 audio encodings . 50
5.1.7 struct audio karaoke . 51
5.1.8 audio attributes . 51

5.2 Audio Function Calls . 52
5.2.1 open() . 52
5.2.2 close() . 52
5.2.3 write() . 53
5.2.4 AUDIO STOP . 53
5.2.5 AUDIO PLAY . 53
5.2.6 AUDIO PAUSE . 54
5.2.7 AUDIO SELECT SOURCE 54
5.2.8 AUDIO SET MUTE . 55
5.2.9 AUDIO SET AV SYNC . 55
5.2.10 AUDIO SET BYPASS MODE 55
5.2.11 AUDIO CHANNEL SELECT 56
5.2.12 AUDIO GET STATUS . 56
5.2.13 AUDIO GET CAPABILITIES 57
5.2.14 AUDIO CLEAR BUFFER 57
5.2.15 AUDIO SET ID . 58
5.2.16 AUDIO SET MIXER . 58
5.2.17 AUDIO SET STREAMTYPE 58
5.2.18 AUDIO SET EXT ID . 59

iii

CONTENTS CONTENTS

5.2.19 AUDIO SET ATTRIBUTES 59
5.2.20 AUDIO SET KARAOKE 60

6 DVB CA Device 61
6.1 CA Data Types . 61

6.1.1 ca slot info t . 61
6.1.2 ca descr info t . 61
6.1.3 ca cap t . 62
6.1.4 ca msg t . 62
6.1.5 ca descr t . 62

6.2 CA Function Calls . 63
6.2.1 open() . 63
6.2.2 close() . 63

7 DVB Network API 65
7.1 DVB Net Data Types . 65

8 Kernel Demux API 67
8.1 Kernel Demux Data Types . 67

8.1.1 dmx success t . 67
8.1.2 TS filter types . 67
8.1.3 dmx ts pes t . 68
8.1.4 demux demux t . 71
8.1.5 Demux directory . 72

8.2 Demux Directory API . 73
8.2.1 dmx register demux() . 73
8.2.2 dmx unregister demux() . 73
8.2.3 dmx get demuxes() . 74

8.3 Demux API . 75
8.3.1 open() . 75
8.3.2 close() . 76
8.3.3 write() . 76
8.3.4 allocate ts feed() . 77
8.3.5 release ts feed() . 77
8.3.6 allocate section feed() . 77
8.3.7 release section feed() . 78
8.3.8 descramble mac address() 78
8.3.9 descramble section payload() 79
8.3.10 add frontend() . 80
8.3.11 remove frontend() . 81
8.3.12 get frontends() . 81
8.3.13 connect frontend() . 82
8.3.14 disconnect frontend() . 82

8.4 Demux Callback API . 83
8.4.1 dmx ts cb() . 83
8.4.2 dmx section cb() . 85

8.5 TS Feed API . 87
8.5.1 set() . 87
8.5.2 start filtering() . 87
8.5.3 stop filtering() . 88

iv

CONTENTS CONTENTS

8.6 Section Feed API . 89
8.6.1 set() . 89
8.6.2 allocate filter() . 90
8.6.3 release filter() . 90
8.6.4 start filtering() . 91
8.6.5 stop filtering() . 91

9 Examples 93
9.1 Tuning . 93
9.2 The DVR device . 97

A GNU Free Documentation License 101
A.1 Applicability and Definitions . 101
A.2 Verbatim Copying . 102
A.3 Copying in Quantity . 103
A.4 Modifications . 103
A.5 Combining Documents . 105
A.6 Collections of Documents . 105
A.7 Aggregation With Independent Works 105
A.8 Translation . 106
A.9 Termination . 106
A.10 Future Revisions of This License . 106

v

CONTENTS CONTENTS

vi

1

Chapter 1

Introduction

1.1 What you need to know
The reader of this document is required to have some knowledge in the area of digital
video broadcasting (DVB) and should be familiar with part I of the MPEG2 specifica-
tion ISO/IEC 13818 (aka ITU-T H.222), i.e you should know what a program/transport
stream (PS/TS) is and what is meant by a packetized elementary stream (PES) or an
I-frame.

Various DVB standards documents are available from http://www.dvb.org/
and/or http://www.etsi.org/.

It is also necessary to know how to access unix/linux devices and how to use ioctl
calls. This also includes the knowledge of C or C++.

1.2 History
The first API for DVB cards we used at Convergence in late 1999 was an extension
of the Video4Linux API which was primarily developed for frame grabber cards. As
such it was not really well suited to be used for DVB cards and their new features like
recording MPEG streams and filtering several section and PES data streams at the same
time.

In early 2000, we were approached by Nokia with a proposal for a new standard
Linux DVB API. As a commitment to the development of terminals based on open
standards, Nokia and Convergence made it available to all Linux developers and pub-
lished it on http://www.linuxtv.org/ in September 2000. Convergence is the
maintainer of the Linux DVB API. Together with the LinuxTV community (i.e. you,
the reader of this document), the Linux DVB API will be constantly reviewed and im-
proved. With the Linux driver for the Siemens/Hauppauge DVB PCI card Convergence
provides a first implementation of the Linux DVB API.

1

2 INTRODUCTION

1.3 Overview

Frontend Demuxer

VideoAudioSEC

CA

Antenna

TV

Figure 1.1: Components of a DVB card/STB

A DVB PCI card or DVB set-top-box (STB) usually consists of the following main
hardware components:

• Frontend consisting of tuner and DVB demodulator

Here the raw signal reaches the DVB hardware from a satellite dish or antenna
or directly from cable. The frontend down-converts and demodulates this signal
into an MPEG transport stream (TS). In case of a satellite frontend, this includes
a facility for satellite equipment control (SEC), which allows control of LNB
polarization, multi feed switches or dish rotors.

• Conditional Access (CA) hardware like CI adapters and smartcard slots

The complete TS is passed through the CA hardware. Programs to which the user
has access (controlled by the smart card) are decoded in real time and re-inserted
into the TS.

• Demultiplexer which filters the incoming DVB stream

The demultiplexer splits the TS into its components like audio and video streams.
Besides usually several of such audio and video streams it also contains data
streams with information about the programs offered in this or other streams of
the same provider.

• MPEG2 audio and video decoder

The main targets of the demultiplexer are the MPEG2 audio and video decoders.
After decoding they pass on the uncompressed audio and video to the computer
screen or (through a PAL/NTSC encoder) to a TV set.

Figure 1.1 shows a crude schematic of the control and data flow between those
components.

On a DVB PCI card not all of these have to be present since some functionality can
be provided by the main CPU of the PC (e.g. MPEG picture and sound decoding) or is
not needed (e.g. for data-only uses like “internet over satellite”). Also not every card
or STB provides conditional access hardware.

2

1.4. Linux DVB Devices 3

1.4 Linux DVB Devices
The Linux DVB API lets you control these hardware components through currently
six Unix-style character devices for video, audio, frontend, demux, CA and IP-over-
DVB networking. The video and audio devices control the MPEG2 decoder hardware,
the frontend device the tuner and the DVB demodulator. The demux device gives you
control over the PES and section filters of the hardware. If the hardware does not
support filtering these filters can be implemented in software. Finally, the CA device
controls all the conditional access capabilities of the hardware. It can depend on the
individual security requirements of the platform, if and how many of the CA functions
are made available to the application through this device.

All devices can be found in the /dev tree under /dev/dvb. The individual de-
vices are called

• /dev/dvb/adapterN/audioM,

• /dev/dvb/adapterN/videoM,

• /dev/dvb/adapterN/frontendM,

• /dev/dvb/adapterN/netM,

• /dev/dvb/adapterN/demuxM,

• /dev/dvb/adapterN/caM,

where N enumerates the DVB PCI cards in a system starting from 0, and M enumerates
the devices of each type within each adapter, starting from 0, too. We will omit the
“/dev/dvb/adapterN/” in the further dicussion of these devices. The naming
scheme for the devices is the same wheter devfs is used or not.

More details about the data structures and function calls of all the devices are de-
scribed in the following chapters.

1.5 API include files
For each of the DVB devices a corresponding include file exists. The DVB API include
files should be included in application sources with a partial path like:

#include <linux/dvb/frontend.h>

To enable applications to support different API version, an additional include file
linux/dvb/version.h exists, which defines the constant DVB API VERSION.
This document describes DVB API VERSION 3.

3

4 INTRODUCTION

4

5

Chapter 2

DVB Frontend API

The DVB frontend device controls the tuner and DVB demodulator hardware. It can
be accessed through /dev/dvb/adapter0/frontend0. Data types and and ioctl
definitions can be accessed by including linux/dvb/frontend.h in your appli-
cation.

DVB frontends come in three varieties: DVB-S (satellite), DVB-C (cable) and
DVB-T (terrestrial). Transmission via the internet (DVB-IP) is not yet handled by this
API but a future extension is possible. For DVB-S the frontend device also supports
satellite equipment control (SEC) via DiSEqC and V-SEC protocols. The DiSEqC (dig-
ital SEC) specification is available from Eutelsat http://www.eutelsat.org/.

Note that the DVB API may also be used for MPEG decoder-only PCI cards, in
which case there exists no frontend device.

2.1 Frontend Data Types

2.1.1 frontend type
For historical reasons frontend types are named after the type of modulation used in
transmission.

typedef enum fe_type {
FE_QPSK, /* DVB-S */
FE_QAM, /* DVB-C */
FE_OFDM /* DVB-T */

} fe_type_t;

2.1.2 frontend capabilities
Capabilities describe what a frontend can do. Some capabilities can only be supported
for a specific frontend type.

typedef enum fe_caps {
FE_IS_STUPID = 0,
FE_CAN_INVERSION_AUTO = 0x1,
FE_CAN_FEC_1_2 = 0x2,
FE_CAN_FEC_2_3 = 0x4,

5

6 DVB FRONTEND API

FE_CAN_FEC_3_4 = 0x8,
FE_CAN_FEC_4_5 = 0x10,
FE_CAN_FEC_5_6 = 0x20,
FE_CAN_FEC_6_7 = 0x40,
FE_CAN_FEC_7_8 = 0x80,
FE_CAN_FEC_8_9 = 0x100,
FE_CAN_FEC_AUTO = 0x200,
FE_CAN_QPSK = 0x400,
FE_CAN_QAM_16 = 0x800,
FE_CAN_QAM_32 = 0x1000,
FE_CAN_QAM_64 = 0x2000,
FE_CAN_QAM_128 = 0x4000,
FE_CAN_QAM_256 = 0x8000,
FE_CAN_QAM_AUTO = 0x10000,
FE_CAN_TRANSMISSION_MODE_AUTO = 0x20000,
FE_CAN_BANDWIDTH_AUTO = 0x40000,
FE_CAN_GUARD_INTERVAL_AUTO = 0x80000,
FE_CAN_HIERARCHY_AUTO = 0x100000,
FE_CAN_MUTE_TS = 0x80000000,
FE_CAN_CLEAN_SETUP = 0x40000000

} fe_caps_t;

2.1.3 frontend information

Information about the frontend ca be queried with FE GET INFO (2.2.11).

struct dvb_frontend_info {
char name[128];
fe_type_t type;
uint32_t frequency_min;
uint32_t frequency_max;
uint32_t frequency_stepsize;
uint32_t frequency_tolerance;
uint32_t symbol_rate_min;
uint32_t symbol_rate_max;
uint32_t symbol_rate_tolerance; /* ppm */
uint32_t notifier_delay; /* ms */
fe_caps_t caps;

};

2.1.4 diseqc master command

A message sent from the frontend to DiSEqC capable equipment.

struct dvb_diseqc_master_cmd {
uint8_t msg [6]; /* { framing, address, command, data[3] } */
uint8_t msg_len; /* valid values are 3...6 */

};

6

2.1. Frontend Data Types 7

2.1.5 diseqc slave reply

A reply to the frontend from DiSEqC 2.0 capable equipment.

struct dvb_diseqc_slave_reply {
uint8_t msg [4]; /* { framing, data [3] } */
uint8_t msg_len; /* valid values are 0...4, 0 means no msg */
int timeout; /* return from ioctl after timeout ms with */

}; /* errorcode when no message was received */

2.1.6 SEC voltage

The voltage is usually used with non-DiSEqC capable LNBs to switch the polarzation
(horizontal/vertical). When using DiSEqC epuipment this voltage has to be switched
consistently to the DiSEqC commands as described in the DiSEqC spec.

typedef enum fe_sec_voltage {
SEC_VOLTAGE_13,
SEC_VOLTAGE_18

} fe_sec_voltage_t;

2.1.7 SEC continuous tone

The continous 22KHz tone is usually used with non-DiSEqC capable LNBs to switch
the high/low band of a dual-band LNB. When using DiSEqC epuipment this voltage
has to be switched consistently to the DiSEqC commands as described in the DiSEqC
spec.

typedef enum fe_sec_tone_mode {
SEC_TONE_ON,
SEC_TONE_OFF

} fe_sec_tone_mode_t;

2.1.8 SEC tone burst

The 22KHz tone burst is usually used with non-DiSEqC capable switches to select
between two connected LNBs/satellites. When using DiSEqC epuipment this voltage
has to be switched consistently to the DiSEqC commands as described in the DiSEqC
spec.

typedef enum fe_sec_mini_cmd {
SEC_MINI_A,
SEC_MINI_B

} fe_sec_mini_cmd_t;

2.1.9 frontend status

Several functions of the frontend device use the fe status data type defined by

7

8 DVB FRONTEND API

typedef enum fe_status {
FE_HAS_SIGNAL = 0x01, /* found something above the noise level */
FE_HAS_CARRIER = 0x02, /* found a DVB signal */
FE_HAS_VITERBI = 0x04, /* FEC is stable */
FE_HAS_SYNC = 0x08, /* found sync bytes */
FE_HAS_LOCK = 0x10, /* everything’s working... */
FE_TIMEDOUT = 0x20, /* no lock within the last ˜2 seconds */
FE_REINIT = 0x40 /* frontend was reinitialized, */

} fe_status_t; /* application is recommned to reset */

to indicate the current state and/or state changes of the frontend hardware.

2.1.10 frontend parameters
The kind of parameters passed to the frontend device for tuning depend on the kind
of hardware you are using. All kinds of parameters are combined as a union in the
FrontendParameters structure:

struct dvb_frontend_parameters {
uint32_t frequency; /* (absolute) frequency in Hz for QAM/OFDM */

/* intermediate frequency in kHz for QPSK */
fe_spectral_inversion_t inversion;
union {

struct dvb_qpsk_parameters qpsk;
struct dvb_qam_parameters qam;
struct dvb_ofdm_parameters ofdm;

} u;
};

For satellite QPSK frontends you have to use the QPSKParameters member
defined by

struct dvb_qpsk_parameters {
uint32_t symbol_rate; /* symbol rate in Symbols per second */
fe_code_rate_t fec_inner; /* forward error correction (see above) */

};

for cable QAM frontend you use the QAMParameters structure

struct dvb_qam_parameters {
uint32_t symbol_rate; /* symbol rate in Symbols per second */
fe_code_rate_t fec_inner; /* forward error correction (see above) */
fe_modulation_t modulation; /* modulation type (see above) */

};

DVB-T frontends are supported by the OFDMParamters structure

struct dvb_ofdm_parameters {
fe_bandwidth_t bandwidth;
fe_code_rate_t code_rate_HP; /* high priority stream code rate */
fe_code_rate_t code_rate_LP; /* low priority stream code rate */
fe_modulation_t constellation; /* modulation type (see above) */
fe_transmit_mode_t transmission_mode;

8

2.1. Frontend Data Types 9

fe_guard_interval_t guard_interval;
fe_hierarchy_t hierarchy_information;

};

In the case of QPSK frontends the Frequency field specifies the intermediate
frequency, i.e. the offset which is effectively added to the local oscillator frequency
(LOF) of the LNB. The intermediate frequency has to be specified in units of kHz.
For QAM and OFDM frontends the Frequency specifies the absolute frequency and is
given in Hz.

The Inversion field can take one of these values:

typedef enum fe_spectral_inversion {
INVERSION_OFF,
INVERSION_ON,
INVERSION_AUTO

} fe_spectral_inversion_t;

It indicates if spectral inversion should be presumed or not. In the automatic setting
(INVERSION_AUTO) the hardware will try to figure out the correct setting by itself.
The possible values for the FEC_inner field are

typedef enum fe_code_rate {
FEC_NONE = 0,
FEC_1_2,
FEC_2_3,
FEC_3_4,
FEC_4_5,
FEC_5_6,
FEC_6_7,
FEC_7_8,
FEC_8_9,
FEC_AUTO

} fe_code_rate_t;

which correspond to error correction rates of 1/2, 2/3, etc., no error correction or auto
detection.
For cable and terrestrial frontends (QAM and OFDM) one also has to specify the
quadrature modulation mode which can be one of the following:

typedef enum fe_modulation {
QPSK,

QAM_16,
QAM_32,
QAM_64,
QAM_128,
QAM_256,
QAM_AUTO

} fe_modulation_t;

Finally, there are several more parameters for OFDM:

typedef enum fe_transmit_mode {
TRANSMISSION_MODE_2K,

9

10 DVB FRONTEND API

TRANSMISSION_MODE_8K,
TRANSMISSION_MODE_AUTO

} fe_transmit_mode_t;

typedef enum fe_bandwidth {
BANDWIDTH_8_MHZ,
BANDWIDTH_7_MHZ,
BANDWIDTH_6_MHZ,
BANDWIDTH_AUTO

} fe_bandwidth_t;

typedef enum fe_guard_interval {
GUARD_INTERVAL_1_32,
GUARD_INTERVAL_1_16,
GUARD_INTERVAL_1_8,
GUARD_INTERVAL_1_4,
GUARD_INTERVAL_AUTO

} fe_guard_interval_t;

typedef enum fe_hierarchy {
HIERARCHY_NONE,
HIERARCHY_1,
HIERARCHY_2,
HIERARCHY_4,
HIERARCHY_AUTO

} fe_hierarchy_t;

2.1.11 frontend events
struct dvb_frontend_event {

fe_status_t status;
struct dvb_frontend_parameters parameters;

};

10

2.2. Frontend Function Calls 11

2.2 Frontend Function Calls

2.2.1 open()
DESCRIPTION

This system call opens a named frontend device (/dev/dvb/adapter0/frontend0)
for subsequent use. Usually the first thing to do after a successful open is to
find out the frontend type with FE GET INFO.
The device can be opened in read-only mode, which only allows monitoring of
device status and statistics, or read/write mode, which allows any kind of use
(e.g. performing tuning operations.)
In a system with multiple front-ends, it is usually the case that multiple devices
cannot be open in read/write mode simultaneously. As long as a front-end
device is opened in read/write mode, other open() calls in read/write mode will
either fail or block, depending on whether non-blocking or blocking mode was
specified. A front-end device opened in blocking mode can later be put into
non-blocking mode (and vice versa) using the F SETFL command of the fcntl
system call. This is a standard system call, documented in the Linux manual
page for fcntl. When an open() call has succeeded, the device will be ready
for use in the specified mode. This implies that the corresponding hardware is
powered up, and that other front-ends may have been powered down to make
that possible.

SYNOPSIS

int open(const char *deviceName, int flags);

PARAMETERS

const char *device-
Name

Name of specific video device.

int flags A bit-wise OR of the following flags:
O RDONLY read-only access
O RDWR read/write access
O NONBLOCK open in non-blocking mode
(blocking mode is the default)

ERRORS

ENODEV Device driver not loaded/available.
EINTERNAL Internal error.
EBUSY Device or resource busy.
EINVAL Invalid argument.

2.2.2 close()
DESCRIPTION

This system call closes a previously opened front-end device. After closing a
front-end device, its corresponding hardware might be powered down automat-
ically.

SYNOPSIS

11

12 DVB FRONTEND API

int close(int fd);

PARAMETERS

int fd File descriptor returned by a previous call to open().

ERRORS

EBADF fd is not a valid open file descriptor.

2.2.3 FE READ STATUS
DESCRIPTION

This ioctl call returns status information about the front-end. This call only
requires read-only access to the device.

SYNOPSIS

int ioctl(int fd, int request = FE READ STATUS,
fe status t *status);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals FE READ STATUS for this command.
struct fe status t
*status

Points to the location where the front-end status word is
to be stored.

ERRORS

EBADF fd is not a valid open file descriptor.
EFAULT status points to invalid address.

2.2.4 FE READ BER
DESCRIPTION

This ioctl call returns the bit error rate for the signal currently re-
ceived/demodulated by the front-end. For this command, read-only access to
the device is sufficient.

SYNOPSIS

int ioctl(int fd, int request = FE READ BER, uint32 t
*ber);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals FE READ BER for this command.
uint32 t *ber The bit error rate is stored into *ber.

ERRORS

EBADF fd is not a valid open file descriptor.
EFAULT ber points to invalid address.
ENOSIGNAL There is no signal, thus no meaningful bit error rate. Also

returned if the front-end is not turned on.
ENOSYS Function not available for this device.

12

2.2. Frontend Function Calls 13

2.2.5 FE READ SNR

DESCRIPTION

This ioctl call returns the signal-to-noise ratio for the signal currently received
by the front-end. For this command, read-only access to the device is sufficient.

SYNOPSIS

int ioctl(int fd, int request = FE READ SNR, int16 t
*snr);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals FE READ SNR for this command.
int16 t *snr The signal-to-noise ratio is stored into *snr.

ERRORS

EBADF fd is not a valid open file descriptor.
EFAULT snr points to invalid address.
ENOSIGNAL There is no signal, thus no meaningful signal strength

value. Also returned if front-end is not turned on.
ENOSYS Function not available for this device.

2.2.6 FE READ SIGNAL STRENGTH

DESCRIPTION

This ioctl call returns the signal strength value for the signal currently received
by the front-end. For this command, read-only access to the device is sufficient.

SYNOPSIS

int ioctl(int fd, int request =
FE READ SIGNAL STRENGTH, int16 t *strength);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals FE READ SIGNAL STRENGTH for this com-

mand.
int16 t *strength The signal strength value is stored into *strength.

ERRORS

EBADF fd is not a valid open file descriptor.
EFAULT status points to invalid address.
ENOSIGNAL There is no signal, thus no meaningful signal strength

value. Also returned if front-end is not turned on.
ENOSYS Function not available for this device.

13

14 DVB FRONTEND API

2.2.7 FE READ UNCORRECTED BLOCKS
DESCRIPTION

This ioctl call returns the number of uncorrected blocks detected by the de-
vice driver during its lifetime. For meaningful measurements, the increment
in block count during a specific time interval should be calculated. For this
command, read-only access to the device is sufficient.
Note that the counter will wrap to zero after its maximum count has been
reached.

SYNOPSIS
int ioctl(int fd, int request =
FE READ UNCORRECTED BLOCKS, uint32 t *ublocks);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals FE READ UNCORRECTED BLOCKS for this

command.
uint32 t *ublocks The total number of uncorrected blocks seen by the driver

so far.

ERRORS
EBADF fd is not a valid open file descriptor.
EFAULT ublocks points to invalid address.
ENOSYS Function not available for this device.

2.2.8 FE SET FRONTEND
DESCRIPTION

This ioctl call starts a tuning operation using specified parameters. The re-
sult of this call will be successful if the parameters were valid and the tuning
could be initiated. The result of the tuning operation in itself, however, will ar-
rive asynchronously as an event (see documentation for FE GET EVENT and
FrontendEvent.) If a new FE SET FRONTEND operation is initiated before
the previous one was completed, the previous operation will be aborted in favor
of the new one. This command requires read/write access to the device.

SYNOPSIS
int ioctl(int fd, int request = FE SET FRONTEND,
struct dvb frontend parameters *p);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals FE SET FRONTEND for this command.
struct
dvb frontend parameters
*p

Points to parameters for tuning operation.

ERRORS
EBADF fd is not a valid open file descriptor.
EFAULT p points to invalid address.
EINVAL Maximum supported symbol rate reached.

14

2.2. Frontend Function Calls 15

2.2.9 FE GET FRONTEND
DESCRIPTION

This ioctl call queries the currently effective frontend parameters. For this
command, read-only access to the device is sufficient.

SYNOPSIS
int ioctl(int fd, int request = FE GET FRONTEND,
struct dvb frontend parameters *p);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals FE SET FRONTEND for this command.
struct
dvb frontend parameters
*p

Points to parameters for tuning operation.

ERRORS
EBADF fd is not a valid open file descriptor.
EFAULT p points to invalid address.
EINVAL Maximum supported symbol rate reached.

2.2.10 FE GET EVENT
DESCRIPTION

This ioctl call returns a frontend event if available. If an event is not available,
the behavior depends on whether the device is in blocking or non-blocking
mode. In the latter case, the call fails immediately with errno set to EWOULD-
BLOCK. In the former case, the call blocks until an event becomes available.
The standard Linux poll() and/or select() system calls can be used with the
device file descriptor to watch for new events. For select(), the file descriptor
should be included in the exceptfds argument, and for poll(), POLLPRI should
be specified as the wake-up condition. Since the event queue allocated is rather
small (room for 8 events), the queue must be serviced regularly to avoid over-
flow. If an overflow happens, the oldest event is discarded from the queue, and
an error (EOVERFLOW) occurs the next time the queue is read. After report-
ing the error condition in this fashion, subsequent FE GET EVENT calls will
return events from the queue as usual.
For the sake of implementation simplicity, this command requires read/write
access to the device.

SYNOPSIS
int ioctl(int fd, int request = QPSK GET EVENT,
struct dvb frontend event *ev);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals FE GET EVENT for this command.
struct
dvb frontend event
*ev

Points to the location where the event,

if any, is to be stored.

15

16 DVB FRONTEND API

ERRORS
EBADF fd is not a valid open file descriptor.
EFAULT ev points to invalid address.
EWOULDBLOCK There is no event pending, and the device is in non-

blocking mode.
EOVERFLOW

Overflow in event queue - one or more events were lost.

2.2.11 FE GET INFO
DESCRIPTION

This ioctl call returns information about the front-end. This call only requires
read-only access to the device.

SYNOPSIS

int ioctl(int fd, int request = FE GET INFO, struct
dvb frontend info *info);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals FE GET INFO for this command.
struct
dvb frontend info
*info

Points to the location where the front-end information is
to be stored.

ERRORS
EBADF fd is not a valid open file descriptor.
EFAULT info points to invalid address.

2.2.12 FE DISEQC RESET OVERLOAD
DESCRIPTION

If the bus has been automatically powered off due to power overload, this ioctl
call restores the power to the bus. The call requires read/write access to the
device. This call has no effect if the device is manually powered off. Not all
DVB adapters support this ioctl.

SYNOPSIS
int ioctl(int fd, int request =
FE DISEQC RESET OVERLOAD);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals FE DISEQC RESET OVERLOAD for this com-

mand.

ERRORS
EBADF fd is not a valid file descriptor.
EPERM Permission denied (needs read/write access).
EINTERNAL Internal error in the device driver.

16

2.2. Frontend Function Calls 17

2.2.13 FE DISEQC SEND MASTER CMD
DESCRIPTION

This ioctl call is used to send a a DiSEqC command.

SYNOPSIS
int ioctl(int fd, int request =
FE DISEQC SEND MASTER CMD, struct
dvb diseqc master cmd *cmd);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals FE DISEQC SEND MASTER CMD for this

command.
struct
dvb diseqc master cmd
*cmd

Pointer to the command to be transmitted.

ERRORS
EBADF fd is not a valid file descriptor.
EFAULT Seq points to an invalid address.
EINVAL The data structure referred to by seq is invalid in some

way.
EPERM Permission denied (needs read/write access).
EINTERNAL Internal error in the device driver.

2.2.14 FE DISEQC RECV SLAVE REPLY
DESCRIPTION

This ioctl call is used to receive reply to a DiSEqC 2.0 command.

SYNOPSIS
int ioctl(int fd, int request =
FE DISEQC RECV SLAVE REPLY, struct
dvb diseqc slave reply *reply);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals FE DISEQC RECV SLAVE REPLY for this

command.
struct
dvb diseqc slave reply
*reply

Pointer to the command to be received.

ERRORS
EBADF fd is not a valid file descriptor.
EFAULT Seq points to an invalid address.
EINVAL The data structure referred to by seq is invalid in some

way.
EPERM Permission denied (needs read/write access).
EINTERNAL Internal error in the device driver.

17

18 DVB FRONTEND API

2.2.15 FE DISEQC SEND BURST

DESCRIPTION

This ioctl call is used to send a 22KHz tone burst.

SYNOPSIS

int ioctl(int fd, int request = FE DISEQC SEND BURST,
fe sec mini cmd t burst);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals FE DISEQC SEND BURST for this command.
fe sec mini cmd t
burst

burst A or B.

ERRORS

EBADF fd is not a valid file descriptor.
EFAULT Seq points to an invalid address.
EINVAL The data structure referred to by seq is invalid in some

way.
EPERM Permission denied (needs read/write access).
EINTERNAL Internal error in the device driver.

2.2.16 FE SET TONE

DESCRIPTION

This call is used to set the generation of the continuous 22kHz tone. This call
requires read/write permissions.

SYNOPSIS

int ioctl(int fd, int request = FE SET TONE,
fe sec tone mode t tone);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals FE SET TONE for this command.
fe sec tone mode t
tone

The requested tone generation mode (on/off).

ERRORS

ENODEV Device driver not loaded/available.
EBUSY Device or resource busy.
EINVAL Invalid argument.
EPERM File not opened with read permissions.
EINTERNAL Internal error in the device driver.

18

2.2. Frontend Function Calls 19

2.2.17 FE SET VOLTAGE
DESCRIPTION

This call is used to set the bus voltage. This call requires read/write permis-
sions.

SYNOPSIS

int ioctl(int fd, int request = FE SET VOLTAGE,
fe sec voltage t voltage);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals FE SET VOLTAGE for this command.
fe sec voltage t volt-
age

The requested bus voltage.

ERRORS

ENODEV Device driver not loaded/available.
EBUSY Device or resource busy.
EINVAL Invalid argument.
EPERM File not opened with read permissions.
EINTERNAL Internal error in the device driver.

2.2.18 FE ENABLE HIGH LNB VOLTAGE
DESCRIPTION

If high != 0 enables slightly higher voltages instead of 13/18V (to compen-
sate for long cables). This call requires read/write permissions. Not all DVB
adapters support this ioctl.

SYNOPSIS

int ioctl(int fd, int request =
FE ENABLE HIGH LNB VOLTAGE, int high);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals FE SET VOLTAGE for this command.
int high The requested bus voltage.

ERRORS

ENODEV Device driver not loaded/available.
EBUSY Device or resource busy.
EINVAL Invalid argument.
EPERM File not opened with read permissions.
EINTERNAL Internal error in the device driver.

19

20 DVB FRONTEND API

20

21

Chapter 3

DVB Demux Device

The DVB demux device controls the filters of the DVB hardware/software. It can be
accessed through /dev/adapter0/demux0. Data types and and ioctl definitions
can be accessed by including linux/dvb/dmx.h in your application.

3.1 Demux Data Types

3.1.1 dmx output t
typedef enum
{

DMX_OUT_DECODER,
DMX_OUT_TAP,
DMX_OUT_TS_TAP

} dmx_output_t;

DMX OUT TAP delivers the stream output to the demux device on which the ioctl is
called.
DMX OUT TS TAP routes output to the logical DVR device/dev/dvb/adapter0/dvr0,
which delivers a TS multiplexed from all filters for which DMX OUT TS TAPwas spec-
ified.

3.1.2 dmx input t
typedef enum
{

DMX_IN_FRONTEND,
DMX_IN_DVR

} dmx_input_t;

3.1.3 dmx pes type t
typedef enum
{

DMX_PES_AUDIO,
DMX_PES_VIDEO,

21

22 DVB DEMUX DEVICE

DMX_PES_TELETEXT,
DMX_PES_SUBTITLE,
DMX_PES_PCR,
DMX_PES_OTHER

} dmx_pes_type_t;

3.1.4 dmx event t
typedef enum
{

DMX_SCRAMBLING_EV,
DMX_FRONTEND_EV

} dmx_event_t;

3.1.5 dmx scrambling status t
typedef enum
{

DMX_SCRAMBLING_OFF,
DMX_SCRAMBLING_ON

} dmx_scrambling_status_t;

3.1.6 struct dmx filter
typedef struct dmx_filter
{

uint8_t filter[DMX_FILTER_SIZE];
uint8_t mask[DMX_FILTER_SIZE];

} dmx_filter_t;

3.1.7 struct dmx sct filter params
struct dmx_sct_filter_params
{

uint16_t pid;
dmx_filter_t filter;
uint32_t timeout;
uint32_t flags;

#define DMX_CHECK_CRC 1
#define DMX_ONESHOT 2
#define DMX_IMMEDIATE_START 4
};

3.1.8 struct dmx pes filter params
struct dmx_pes_filter_params
{

uint16_t pid;
dmx_input_t input;
dmx_output_t output;

22

3.1. Demux Data Types 23

dmx_pes_type_t pes_type;
uint32_t flags;

};

3.1.9 struct dmx event
struct dmx_event
{

dmx_event_t event;
time_t timeStamp;
union
{

dmx_scrambling_status_t scrambling;
} u;

};

3.1.10 struct dmx stc
struct dmx_stc {

unsigned int num; /* input : which STC? 0..N */
unsigned int base; /* output: divisor for stc to get 90 kHz clock */
uint64_t stc; /* output: stc in ’base’*90 kHz units */

};

23

24 DVB DEMUX DEVICE

3.2 Demux Function Calls

3.2.1 open()
DESCRIPTION

This system call, used with a device name of /dev/dvb/adapter0/demux0, allo-
cates a new filter and returns a handle which can be used for subsequent control
of that filter. This call has to be made for each filter to be used, i.e. every re-
turned file descriptor is a reference to a single filter. /dev/dvb/adapter0/dvr0
is a logical device to be used for retrieving Transport Streams for digital
video recording. When reading from this device a transport stream contain-
ing the packets from all PES filters set in the corresponding demux device
(/dev/dvb/adapter0/demux0) having the output set to DMX OUT TS TAP. A
recorded Transport Stream is replayed by writing to this device.
The significance of blocking or non-blocking mode is described in the doc-
umentation for functions where there is a difference. It does not affect the
semantics of the open() call itself. A device opened in blocking mode can later
be put into non-blocking mode (and vice versa) using the F SETFL command
of the fcntl system call.

SYNOPSIS

int open(const char *deviceName, int flags);

PARAMETERS
const char *device-
Name

Name of demux device.

int flags A bit-wise OR of the following flags:
O RDWR read/write access
O NONBLOCK open in non-blocking mode
(blocking mode is the default)

ERRORS
ENODEV Device driver not loaded/available.
EINVAL Invalid argument.
EMFILE “Too many open files”, i.e. no more filters available.
ENOMEM The driver failed to allocate enough memory.

3.2.2 close()
DESCRIPTION

This system call deactivates and deallocates a filter that was previously allo-
cated via the open() call.

SYNOPSIS

int close(int fd);

PARAMETERS

int fd File descriptor returned by a previous call to open().

ERRORS

EBADF fd is not a valid open file descriptor.

24

3.2. Demux Function Calls 25

3.2.3 read()

DESCRIPTION

This system call returns filtered data, which might be section or PES data. The
filtered data is transferred from the driver’s internal circular buffer to buf. The
maximum amount of data to be transferred is implied by count.
When returning section data the driver always tries to return a complete single
section (even though buf would provide buffer space for more data). If the size
of the buffer is smaller than the section as much as possible will be returned,
and the remaining data will be provided in subsequent calls.
The size of the internal buffer is 2 * 4096 bytes (the size of two maximum
sized sections) by default. The size of this buffer may be changed by using
the DMX SET BUFFER SIZE function. If the buffer is not large enough, or
if the read operations are not performed fast enough, this may result in a buffer
overflow error. In this case EOVERFLOW will be returned, and the circular
buffer will be emptied. This call is blocking if there is no data to return, i.e. the
process will be put to sleep waiting for data, unless the O NONBLOCK flag is
specified.
Note that in order to be able to read, the filtering process has to be started
by defining either a section or a PES filter by means of the ioctl functions,
and then starting the filtering process via the DMX START ioctl function or
by setting the DMX IMMEDIATE START flag. If the reading is done from
a logical DVR demux device, the data will constitute a Transport Stream in-
cluding the packets from all PES filters in the corresponding demux device
/dev/dvb/adapter0/demux0 having the output set to DMX OUT TS TAP.

SYNOPSIS

size t read(int fd, void *buf, size t count);

PARAMETERS

int fd File descriptor returned by a previous call to open().
void *buf Pointer to the buffer to be used for returned filtered data.
size t count Size of buf.

ERRORS

EWOULDBLOCK No data to return and O NONBLOCK was specified.
EBADF fd is not a valid open file descriptor.
ECRC Last section had a CRC error - no data returned. The

buffer is flushed.
EOVERFLOW

The filtered data was not read from the buffer in due
time, resulting in non-read data being lost. The buffer
is flushed.

ETIMEDOUT The section was not loaded within the stated timeout pe-
riod. See ioctl DMX SET FILTER for how to set a time-
out.

EFAULT The driver failed to write to the callers buffer due to an
invalid *buf pointer.

25

26 DVB DEMUX DEVICE

3.2.4 write()
DESCRIPTION

This system call is only provided by the logical device /dev/dvb/adapter0/dvr0,
associated with the physical demux device that provides the actual DVR func-
tionality. It is used for replay of a digitally recorded Transport Stream. Match-
ing filters have to be defined in the corresponding physical demux device,
/dev/dvb/adapter0/demux0. The amount of data to be transferred is implied
by count.

SYNOPSIS
ssize t write(int fd, const void *buf, size t
count);

PARAMETERS
int fd File descriptor returned by a previous call to open().
void *buf Pointer to the buffer containing the Transport Stream.
size t count Size of buf.

ERRORS
EWOULDBLOCK No data was written. This might happen if

O NONBLOCK was specified and there is no more
buffer space available (if O NONBLOCK is not specified
the function will block until buffer space is available).

EBUSY This error code indicates that there are conflicting re-
quests. The corresponding demux device is setup to re-
ceive data from the front- end. Make sure that these
filters are stopped and that the filters with input set to
DMX IN DVR are started.

EBADF fd is not a valid open file descriptor.

3.2.5 DMX START
DESCRIPTION

This ioctl call is used to start the actual filtering operation defined via the ioctl
calls DMX SET FILTER or DMX SET PES FILTER.

SYNOPSIS

int ioctl(int fd, int request = DMX START);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals DMX START for this command.

ERRORS
EBADF fd is not a valid file descriptor.
EINVAL Invalid argument, i.e. no filtering parameters provided

via the DMX SET FILTER or DMX SET PES FILTER
functions.

EBUSY This error code indicates that there are conflicting re-
quests. There are active filters filtering data from another
input source. Make sure that these filters are stopped be-
fore starting this filter.

26

3.2. Demux Function Calls 27

3.2.6 DMX STOP

DESCRIPTION

This ioctl call is used to stop the actual filtering operation defined via the
ioctl calls DMX SET FILTER or DMX SET PES FILTER and started via the
DMX START command.

SYNOPSIS

int ioctl(int fd, int request = DMX STOP);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals DMX STOP for this command.

ERRORS

EBADF fd is not a valid file descriptor.

3.2.7 DMX SET FILTER

DESCRIPTION

This ioctl call sets up a filter according to the filter and mask parameters pro-
vided. A timeout may be defined stating number of seconds to wait for a section
to be loaded. A value of 0 means that no timeout should be applied. Finally
there is a flag field where it is possible to state whether a section should be
CRC-checked, whether the filter should be a ”one-shot” filter, i.e. if the filter-
ing operation should be stopped after the first section is received, and whether
the filtering operation should be started immediately (without waiting for a
DMX START ioctl call). If a filter was previously set-up, this filter will be
canceled, and the receive buffer will be flushed.

SYNOPSIS

int ioctl(int fd, int request = DMX SET FILTER,
struct dmx sct filter params *params);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals DMX SET FILTER for this command.
struct
dmx sct filter params
*params

Pointer to structure containing filter parameters.

ERRORS

EBADF fd is not a valid file descriptor.
EINVAL Invalid argument.

27

28 DVB DEMUX DEVICE

3.2.8 DMX SET PES FILTER
DESCRIPTION

This ioctl call sets up a PES filter according to the parameters provided. By a
PES filter is meant a filter that is based just on the packet identifier (PID), i.e.
no PES header or payload filtering capability is supported.
The transport stream destination for the filtered output may be set. Also the
PES type may be stated in order to be able to e.g. direct a video stream directly
to the video decoder. Finally there is a flag field where it is possible to state
whether the filtering operation should be started immediately (without waiting
for a DMX START ioctl call). If a filter was previously set-up, this filter will
be cancelled, and the receive buffer will be flushed.

SYNOPSIS
int ioctl(int fd, int request = DMX SET PES FILTER,
struct dmx pes filter params *params);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals DMX SET PES FILTER for this command.
struct
dmx pes filter params
*params

Pointer to structure containing filter parameters.

ERRORS
EBADF fd is not a valid file descriptor.
EINVAL Invalid argument.
EBUSY This error code indicates that there are conflicting re-

quests. There are active filters filtering data from another
input source. Make sure that these filters are stopped be-
fore starting this filter.

3.2.9 DMX SET BUFFER SIZE
DESCRIPTION

This ioctl call is used to set the size of the circular buffer used for filtered data.
The default size is two maximum sized sections, i.e. if this function is not
called a buffer size of 2 * 4096 bytes will be used.

SYNOPSIS
int ioctl(int fd, int request = DMX SET BUFFER SIZE,
unsigned long size);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals DMX SET BUFFER SIZE for this command.
unsigned long size Size of circular buffer.

ERRORS
EBADF fd is not a valid file descriptor.
ENOMEM The driver was not able to allocate a buffer of the re-

quested size.

28

3.2. Demux Function Calls 29

3.2.10 DMX GET EVENT
DESCRIPTION

This ioctl call returns an event if available. If an event is not available, the be-
havior depends on whether the device is in blocking or non-blocking mode. In
the latter case, the call fails immediately with errno set to EWOULDBLOCK.
In the former case, the call blocks until an event becomes available.
The standard Linux poll() and/or select() system calls can be used with the
device file descriptor to watch for new events. For select(), the file descriptor
should be included in the exceptfds argument, and for poll(), POLLPRI should
be specified as the wake-up condition. Only the latest event for each filter is
saved.

SYNOPSIS
int ioctl(int fd, int request = DMX GET EVENT,
struct dmx event *ev);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals DMX GET EVENT for this command.
struct dmx event *ev Pointer to the location where the event is to be stored.

ERRORS
EBADF fd is not a valid file descriptor.
EFAULT ev points to an invalid address.
EWOULDBLOCK There is no event pending, and the device is in non-

blocking mode.

3.2.11 DMX GET STC
DESCRIPTION

This ioctl call returns the current value of the system time counter (which is
driven by a PES filter of type DMX PES PCR). Some hardware supports more
than one STC, so you must specify which one by setting the num field of stc
before the ioctl (range 0...n). The result is returned in form of a ratio with a
64 bit numerator and a 32 bit denominator, so the real 90kHz STC value is
stc->stc / stc->base.

SYNOPSIS
int ioctl(int fd, int request = DMX GET STC, struct
dmx stc *stc);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals DMX GET STC for this command.
struct dmx stc *stc Pointer to the location where the stc is to be stored.

ERRORS
EBADF fd is not a valid file descriptor.
EFAULT stc points to an invalid address.
EINVAL Invalid stc number.

29

30 DVB DEMUX DEVICE

30

31

Chapter 4

DVB Video Device

The DVB video device controls the MPEG2 video decoder of the DVB hardware. It
can be accessed through /dev/dvb/adapter0/video0. Data types and and ioctl
definitions can be accessed by including linux/dvb/video.h in your application.

Note that the DVB video device only controls decoding of the MPEG video stream,
not its presentation on the TV or computer screen. On PCs this is typically handled
by an associated video4linux device, e.g. /dev/video, which allows scaling and
defining output windows.

Some DVB cards don’t have their own MPEG decoder, which results in the omis-
sion of the audio and video device as well as the video4linux device.

The ioctls that deal with SPUs (sub picture units) and navigation packets are only
supported on some MPEG decoders made for DVD playback.

4.1 Video Data Types

4.1.1 video format t

The video format t data type defined by

typedef enum {
VIDEO_FORMAT_4_3,
VIDEO_FORMAT_16_9

} video_format_t;

is used in the VIDEO SET FORMAT function (4.2.20) to tell the driver which as-
pect ratio the output hardware (e.g. TV) has. It is also used in the data structures
video status (4.1.6) returned by VIDEO GET STATUS (4.2.10) and video event (4.1.5)
returned by VIDEO GET EVENT (4.2.11) which report about the display format of
the current video stream.

4.1.2 video display format t

In case the display format of the video stream and of the display hardware differ the
application has to specify how to handle the cropping of the picture. This can be done
using the VIDEO SET DISPLAY FORMAT call (4.2.12) which accepts

31

32 DVB VIDEO DEVICE

typedef enum {
VIDEO_PAN_SCAN,
VIDEO_LETTER_BOX,
VIDEO_CENTER_CUT_OUT

} video_display_format_t;

as argument.

4.1.3 video stream source
The video stream source is set through the VIDEO SELECT SOURCE call and can
take the following values, depending on whether we are replaying from an internal
(demuxer) or external (user write) source.

typedef enum {
VIDEO_SOURCE_DEMUX,
VIDEO_SOURCE_MEMORY

} video_stream_source_t;

VIDEO SOURCE DEMUX selects the demultiplexer (fed either by the frontend or
the DVR device) as the source of the video stream. If VIDEO SOURCE MEMORY is
selected the stream comes from the application through the write() system call.

4.1.4 video play state
The following values can be returned by the VIDEO GET STATUS call representing
the state of video playback.

typedef enum {
VIDEO_STOPPED,
VIDEO_PLAYING,
VIDEO_FREEZED

} video_play_state_t;

4.1.5 struct video event
The following is the structure of a video event as it is returned by the VIDEO GET EVENT
call.

struct video_event {
int32_t type;
time_t timestamp;
union {

video_format_t video_format;
} u;

};

4.1.6 struct video status
The VIDEO GET STATUS call returns the following structure informing about vari-
ous states of the playback operation.

32

4.1. Video Data Types 33

struct video_status {
boolean video_blank;
video_play_state_t play_state;
video_stream_source_t stream_source;
video_format_t video_format;
video_displayformat_t display_format;

};

If video blank is set video will be blanked out if the channel is changed or if playback is
stopped. Otherwise, the last picture will be displayed. play state indicates if the video
is currently frozen, stopped, or being played back. The stream source corresponds to
the seleted source for the video stream. It can come either from the demultiplexer
or from memory. The video format indicates the aspect ratio (one of 4:3 or 16:9) of
the currently played video stream. Finally, display format corresponds to the selected
cropping mode in case the source video format is not the same as the format of the
output device.

4.1.7 struct video still picture
An I-frame displayed via the VIDEO STILLPICTURE call is passed on within the
following structure.

/* pointer to and size of a single iframe in memory */
struct video_still_picture {

char *iFrame;
int32_t size;

};

4.1.8 video capabilities
A call to VIDEO GET CAPABILITIES returns an unsigned integer with the following
bits set according to the hardwares capabilities.

/* bit definitions for capabilities: */
/* can the hardware decode MPEG1 and/or MPEG2? */
#define VIDEO_CAP_MPEG1 1
#define VIDEO_CAP_MPEG2 2
/* can you send a system and/or program stream to video device?

(you still have to open the video and the audio device but only
send the stream to the video device) */

#define VIDEO_CAP_SYS 4
#define VIDEO_CAP_PROG 8
/* can the driver also handle SPU, NAVI and CSS encoded data?

(CSS API is not present yet) */
#define VIDEO_CAP_SPU 16
#define VIDEO_CAP_NAVI 32
#define VIDEO_CAP_CSS 64

4.1.9 video system
A call to VIDEO SET SYSTEM sets the desired video system for TV output. The
following system types can be set:

33

34 DVB VIDEO DEVICE

typedef enum {
VIDEO_SYSTEM_PAL,
VIDEO_SYSTEM_NTSC,
VIDEO_SYSTEM_PALN,
VIDEO_SYSTEM_PALNc,
VIDEO_SYSTEM_PALM,
VIDEO_SYSTEM_NTSC60,
VIDEO_SYSTEM_PAL60,
VIDEO_SYSTEM_PALM60

} video_system_t;

4.1.10 struct video highlight

Calling the ioctl VIDEO SET HIGHLIGHTS posts the SPU highlight information.
The call expects the following format for that information:

typedef
struct video_highlight {

boolean active; /* 1=show highlight, 0=hide highlight */
uint8_t contrast1; /* 7- 4 Pattern pixel contrast */

/* 3- 0 Background pixel contrast */
uint8_t contrast2; /* 7- 4 Emphasis pixel-2 contrast */

/* 3- 0 Emphasis pixel-1 contrast */
uint8_t color1; /* 7- 4 Pattern pixel color */

/* 3- 0 Background pixel color */
uint8_t color2; /* 7- 4 Emphasis pixel-2 color */

/* 3- 0 Emphasis pixel-1 color */
uint32_t ypos; /* 23-22 auto action mode */

/* 21-12 start y */
/* 9- 0 end y */

uint32_t xpos; /* 23-22 button color number */
/* 21-12 start x */
/* 9- 0 end x */

} video_highlight_t;

4.1.11 video SPU

Calling VIDEO SET SPU deactivates or activates SPU decoding, according to the fol-
lowing format:

typedef
struct video_spu {

boolean active;
int stream_id;

} video_spu_t;

4.1.12 video SPU palette

The following structure is used to set the SPU palette by calling VIDEO SPU PALETTE:

34

4.1. Video Data Types 35

typedef
struct video_spu_palette{

int length;
uint8_t *palette;

} video_spu_palette_t;

4.1.13 video NAVI pack
In order to get the navigational data the following structure has to be passed to the ioctl
VIDEO GET NAVI:

typedef
struct video_navi_pack{

int length; /* 0 ... 1024 */
uint8_t data[1024];

} video_navi_pack_t;

4.1.14 video attributes
The following attributes can be set by a call to VIDEO SET ATTRIBUTES:

typedef uint16_t video_attributes_t;
/* bits: descr. */
/* 15-14 Video compression mode (0=MPEG-1, 1=MPEG-2) */
/* 13-12 TV system (0=525/60, 1=625/50) */
/* 11-10 Aspect ratio (0=4:3, 3=16:9) */
/* 9- 8 permitted display mode on 4:3 monitor (0=both, 1=only pan-sca */
/* 7 line 21-1 data present in GOP (1=yes, 0=no) */
/* 6 line 21-2 data present in GOP (1=yes, 0=no) */
/* 5- 3 source resolution (0=720x480/576, 1=704x480/576, 2=352x480/57 */
/* 2 source letterboxed (1=yes, 0=no) */
/* 0 film/camera mode (0=camera, 1=film (625/50 only)) */

35

36 DVB VIDEO DEVICE

4.2 Video Function Calls

4.2.1 open()
DESCRIPTION

This system call opens a named video device (e.g. /dev/dvb/adapter0/video0)
for subsequent use.
When an open() call has succeeded, the device will be ready for use. The sig-
nificance of blocking or non-blocking mode is described in the documentation
for functions where there is a difference. It does not affect the semantics of
the open() call itself. A device opened in blocking mode can later be put into
non-blocking mode (and vice versa) using the F SETFL command of the fcntl
system call. This is a standard system call, documented in the Linux manual
page for fcntl. Only one user can open the Video Device in O RDWR mode.
All other attempts to open the device in this mode will fail, and an error-code
will be returned. If the Video Device is opened in O RDONLY mode, the only
ioctl call that can be used is VIDEO GET STATUS. All other call will return
an error code.

SYNOPSIS

int open(const char *deviceName, int flags);

PARAMETERS
const char *device-
Name

Name of specific video device.

int flags A bit-wise OR of the following flags:
O RDONLY read-only access
O RDWR read/write access
O NONBLOCK open in non-blocking mode
(blocking mode is the default)

ERRORS
ENODEV Device driver not loaded/available.
EINTERNAL Internal error.
EBUSY Device or resource busy.
EINVAL Invalid argument.

4.2.2 close()
DESCRIPTION

This system call closes a previously opened video device.

SYNOPSIS

int close(int fd);

PARAMETERS

int fd File descriptor returned by a previous call to open().

ERRORS

EBADF fd is not a valid open file descriptor.

36

4.2. Video Function Calls 37

4.2.3 write()

DESCRIPTION

This system call can only be used if VIDEO SOURCE MEMORY is selected
in the ioctl call VIDEO SELECT SOURCE. The data provided shall be in PES
format, unless the capability allows other formats. If O NONBLOCK is not
specified the function will block until buffer space is available. The amount of
data to be transferred is implied by count.

SYNOPSIS

size t write(int fd, const void *buf, size t count);

PARAMETERS

int fd File descriptor returned by a previous call to open().
void *buf Pointer to the buffer containing the PES data.
size t count Size of buf.

ERRORS

EPERM Mode VIDEO SOURCE MEMORY not selected.
ENOMEM Attempted to write more data than the internal buffer can

hold.
EBADF fd is not a valid open file descriptor.

4.2.4 VIDEO STOP

DESCRIPTION

This ioctl call asks the Video Device to stop playing the current stream. De-
pending on the input parameter, the screen can be blanked out or displaying the
last decoded frame.

SYNOPSIS

int ioctl(fd, int request = VIDEO STOP, boolean
mode);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO STOP for this command.
Boolean mode Indicates how the screen shall be handled.

TRUE: Blank screen when stop.
FALSE: Show last decoded frame.

ERRORS

EBADF fd is not a valid open file descriptor
EINTERNAL Internal error, possibly in the communication with the

DVB subsystem.

37

38 DVB VIDEO DEVICE

4.2.5 VIDEO PLAY
DESCRIPTION

This ioctl call asks the Video Device to start playing a video stream from the
selected source.

SYNOPSIS

int ioctl(fd, int request = VIDEO PLAY);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO PLAY for this command.

ERRORS

EBADF fd is not a valid open file descriptor
EINTERNAL Internal error, possibly in the communication with the

DVB subsystem.

4.2.6 VIDEO FREEZE
DESCRIPTION

This ioctl call suspends the live video stream being played. Decod-
ing and playing are frozen. It is then possible to restart the decoding
and playing process of the video stream using the VIDEO CONTINUE
command. If VIDEO SOURCE MEMORY is selected in the ioctl call
VIDEO SELECT SOURCE, the DVB subsystem will not decode any more
data until the ioctl call VIDEO CONTINUE or VIDEO PLAY is performed.

SYNOPSIS

int ioctl(fd, int request = VIDEO FREEZE);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO FREEZE for this command.

ERRORS

EBADF fd is not a valid open file descriptor
EINTERNAL Internal error, possibly in the communication with the

DVB subsystem.

4.2.7 VIDEO CONTINUE
DESCRIPTION

This ioctl call restarts decoding and playing processes of the video stream
which was played before a call to VIDEO FREEZE was made.

SYNOPSIS

int ioctl(fd, int request = VIDEO CONTINUE);

PARAMETERS

38

4.2. Video Function Calls 39

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO CONTINUE for this command.

ERRORS

EBADF fd is not a valid open file descriptor
EINTERNAL Internal error, possibly in the communication with the

DVB subsystem.

4.2.8 VIDEO SELECT SOURCE
DESCRIPTION

This ioctl call informs the video device which source shall be used for the input
data. The possible sources are demux or memory. If memory is selected, the
data is fed to the video device through the write command.

SYNOPSIS

int ioctl(fd, int request = VIDEO SELECT SOURCE,
video stream source t source);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO SELECT SOURCE for this command.
video stream source t
source

Indicates which source shall be used for the Video stream.

ERRORS

EBADF fd is not a valid open file descriptor
EINTERNAL Internal error, possibly in the communication with the

DVB subsystem.

4.2.9 VIDEO SET BLANK
DESCRIPTION

This ioctl call asks the Video Device to blank out the picture.

SYNOPSIS

int ioctl(fd, int request = VIDEO SET BLANK, boolean
mode);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO SET BLANK for this command.
boolean mode TRUE: Blank screen when stop.

FALSE: Show last decoded frame.

ERRORS

EBADF fd is not a valid open file descriptor
EINTERNAL Internal error, possibly in the communication with the

DVB subsystem.
EINVAL Illegal input parameter

39

40 DVB VIDEO DEVICE

4.2.10 VIDEO GET STATUS
DESCRIPTION

This ioctl call asks the Video Device to return the current status of the device.

SYNOPSIS

int ioctl(fd, int request = VIDEO GET STATUS, struct
video status *status);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals VIDEO GET STATUS for this command.
struct video status
*status

Returns the current status of the Video Device.

ERRORS
EBADF fd is not a valid open file descriptor
EINTERNAL Internal error, possibly in the communication with the

DVB subsystem.
EFAULT status points to invalid address

4.2.11 VIDEO GET EVENT
DESCRIPTION

This ioctl call returns an event of type video event if available. If an event is not
available, the behavior depends on whether the device is in blocking or non-
blocking mode. In the latter case, the call fails immediately with errno set to
EWOULDBLOCK. In the former case, the call blocks until an event becomes
available. The standard Linux poll() and/or select() system calls can be used
with the device file descriptor to watch for new events. For select(), the file
descriptor should be included in the exceptfds argument, and for poll(), POLL-
PRI should be specified as the wake-up condition. Read-only permissions are
sufficient for this ioctl call.

SYNOPSIS

int ioctl(fd, int request = VIDEO GET EVENT, struct
video event *ev);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals VIDEO GET EVENT for this command.
struct video event
*ev

Points to the location where the event, if any, is to be
stored.

ERRORS
EBADF fd is not a valid open file descriptor
EFAULT ev points to invalid address
EWOULDBLOCK There is no event pending, and the device is in non-

blocking mode.
EOVERFLOW

Overflow in event queue - one or more events were lost.

40

4.2. Video Function Calls 41

4.2.12 VIDEO SET DISPLAY FORMAT

DESCRIPTION

This ioctl call asks the Video Device to select the video format to be applied
by the MPEG chip on the video.

SYNOPSIS

int ioctl(fd, int request = VIDEO SET DISPLAY FORMAT,
video display format t format);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO SET DISPLAY FORMAT for this com-

mand.
video display format t
format

Selects the video format to be used.

ERRORS

EBADF fd is not a valid open file descriptor
EINTERNAL Internal error.
EINVAL Illegal parameter format.

4.2.13 VIDEO STILLPICTURE

DESCRIPTION

This ioctl call asks the Video Device to display a still picture (I-frame). The
input data shall contain an I-frame. If the pointer is NULL, then the current
displayed still picture is blanked.

SYNOPSIS

int ioctl(fd, int request = VIDEO STILLPICTURE,
struct video still picture *sp);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO STILLPICTURE for this command.
struct
video still picture
*sp

Pointer to a location where an I-frame and size is stored.

ERRORS

EBADF fd is not a valid open file descriptor
EINTERNAL Internal error.
EFAULT sp points to an invalid iframe.

41

42 DVB VIDEO DEVICE

4.2.14 VIDEO FAST FORWARD
DESCRIPTION

This ioctl call asks the Video Device to skip decoding of N number of I-frames.
This call can only be used if VIDEO SOURCE MEMORY is selected.

SYNOPSIS

int ioctl(fd, int request = VIDEO FAST FORWARD, int
nFrames);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO FAST FORWARD for this command.
int nFrames The number of frames to skip.

ERRORS

EBADF fd is not a valid open file descriptor
EINTERNAL Internal error.
EPERM Mode VIDEO SOURCE MEMORY not selected.
EINVAL Illegal parameter format.

4.2.15 VIDEO SLOWMOTION
DESCRIPTION

This ioctl call asks the video device to repeat decoding frames N number of
times. This call can only be used if VIDEO SOURCE MEMORY is selected.

SYNOPSIS

int ioctl(fd, int request = VIDEO SLOWMOTION, int
nFrames);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO SLOWMOTION for this command.
int nFrames The number of times to repeat each frame.

ERRORS

EBADF fd is not a valid open file descriptor
EINTERNAL Internal error.
EPERM Mode VIDEO SOURCE MEMORY not selected.
EINVAL Illegal parameter format.

4.2.16 VIDEO GET CAPABILITIES
DESCRIPTION

This ioctl call asks the video device about its decoding capabilities. On success
it returns and integer which has bits set according to the defines in section 4.1.8.

SYNOPSIS

int ioctl(fd, int request = VIDEO GET CAPABILITIES,
unsigned int *cap);

42

4.2. Video Function Calls 43

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO GET CAPABILITIES for this command.
unsigned int *cap Pointer to a location where to store the capability infor-

mation.

ERRORS

EBADF fd is not a valid open file descriptor
EFAULT cap points to an invalid iframe.

4.2.17 VIDEO SET ID

DESCRIPTION

This ioctl selects which sub-stream is to be decoded if a program or system
stream is sent to the video device.

SYNOPSIS

int ioctl(int fd, int request = VIDEO SET ID, int
id);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO SET ID for this command.
int id video sub-stream id

ERRORS

EBADF fd is not a valid open file descriptor.
EINTERNAL Internal error.
EINVAL Invalid sub-stream id.

4.2.18 VIDEO CLEAR BUFFER

DESCRIPTION

This ioctl call clears all video buffers in the driver and in the decoder hardware.

SYNOPSIS

int ioctl(fd, int request = VIDEO CLEAR BUFFER);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO CLEAR BUFFER for this command.

ERRORS

EBADF fd is not a valid open file descriptor

43

44 DVB VIDEO DEVICE

4.2.19 VIDEO SET STREAMTYPE
DESCRIPTION

This ioctl tells the driver which kind of stream to expect being written to it. If
this call is not used the default of video PES is used. Some drivers might not
support this call and always expect PES.

SYNOPSIS
int ioctl(fd, int request = VIDEO SET STREAMTYPE,
int type);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO SET STREAMTYPE for this command.
int type stream type

ERRORS

EBADF fd is not a valid open file descriptor
EINVAL type is not a valid or supported stream type.

4.2.20 VIDEO SET FORMAT
DESCRIPTION

This ioctl sets the screen format (aspect ratio) of the connected output device
(TV) so that the output of the decoder can be adjusted accordingly.

SYNOPSIS

int ioctl(fd, int request = VIDEO SET FORMAT,
video format t format);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals VIDEO SET FORMAT for this command.
video format t
format

video format of TV as defined in section 4.1.1.

ERRORS

EBADF fd is not a valid open file descriptor
EINVAL format is not a valid video format.

4.2.21 VIDEO SET SYSTEM
DESCRIPTION

This ioctl sets the television output format. The format (see section 4.1.9) may
vary from the color format of the displayed MPEG stream. If the hardware is
not able to display the requested format the call will return an error.

SYNOPSIS

int ioctl(fd, int request = VIDEO SET SYSTEM ,
video system t system);

44

4.2. Video Function Calls 45

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals VIDEO SET FORMAT for this command.
video system t
system

video system of TV output.

ERRORS
EBADF fd is not a valid open file descriptor
EINVAL system is not a valid or supported video system.

4.2.22 VIDEO SET HIGHLIGHT
DESCRIPTION

This ioctl sets the SPU highlight information for the menu access of a DVD.

SYNOPSIS

int ioctl(fd, int request = VIDEO SET HIGHLIGHT
,video highlight t *vhilite)

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals VIDEO SET HIGHLIGHT for this command.
video highlight t
*vhilite

SPU Highlight information according to section 4.1.10.

ERRORS
EBADF fd is not a valid open file descriptor.
EINVAL input is not a valid highlight setting.

4.2.23 VIDEO SET SPU
DESCRIPTION

This ioctl activates or deactivates SPU decoding in a DVD input stream. It can
only be used, if the driver is able to handle a DVD stream.

SYNOPSIS

int ioctl(fd, int request = VIDEO SET SPU ,
video spu t *spu)

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals VIDEO SET SPU for this command.
video spu t *spu SPU decoding (de)activation and subid setting according

to section 4.1.11.

ERRORS
EBADF fd is not a valid open file descriptor
EINVAL input is not a valid spu setting or driver cannot handle

SPU.

45

46 DVB VIDEO DEVICE

4.2.24 VIDEO SET SPU PALETTE
DESCRIPTION

This ioctl sets the SPU color palette.

SYNOPSIS

int ioctl(fd, int request = VIDEO SET SPU PALETTE
,video spu palette t *palette)

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO SET SPU PALETTE for this command.
video spu palette t
*palette

SPU palette according to section 4.1.12.

ERRORS

EBADF fd is not a valid open file descriptor
EINVAL input is not a valid palette or driver doesn’t handle SPU.

4.2.25 VIDEO GET NAVI
DESCRIPTION

This ioctl returns navigational information from the DVD stream. This is es-
pecially needed if an encoded stream has to be decoded by the hardware.

SYNOPSIS

int ioctl(fd, int request = VIDEO GET NAVI ,
video navi pack t *navipack)

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO GET NAVI for this command.
video navi pack t
*navipack

PCI or DSI pack (private stream 2) according to section
4.1.13.

ERRORS

EBADF fd is not a valid open file descriptor
EFAULT driver is not able to return navigational information

4.2.26 VIDEO SET ATTRIBUTES
DESCRIPTION

This ioctl is intended for DVD playback and allows you to set certain informa-
tion about the stream. Some hardware may not need this information, but the
call also tells the hardware to prepare for DVD playback.

SYNOPSIS

int ioctl(fd, int request = VIDEO SET ATTRIBUTE
,video attributes t vattr)

46

4.2. Video Function Calls 47

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO SET ATTRIBUTE for this command.
video attributes t
vattr

video attributes according to section 4.1.14.

ERRORS

EBADF fd is not a valid open file descriptor
EINVAL input is not a valid attribute setting.

47

48 DVB VIDEO DEVICE

48

49

Chapter 5

DVB Audio Device

The DVB audio device controls the MPEG2 audio decoder of the DVB hardware. It
can be accessed through /dev/dvb/adapter0/audio0. Data types and and ioctl
definitions can be accessed by including linux/dvb/video.h in your application.

Please note that some DVB cards don’t have their own MPEG decoder, which re-
sults in the omission of the audio and video device.

5.1 Audio Data Types
This section describes the structures, data types and defines used when talking to the
audio device.

5.1.1 audio stream source t
The audio stream source is set through the AUDIO SELECT SOURCE call and can
take the following values, depending on whether we are replaying from an internal
(demux) or external (user write) source.

typedef enum {
AUDIO_SOURCE_DEMUX,
AUDIO_SOURCE_MEMORY

} audio_stream_source_t;

AUDIO SOURCE DEMUX selects the demultiplexer (fed either by the frontend or
the DVR device) as the source of the video stream. If AUDIO SOURCE MEMORY is
selected the stream comes from the application through the write() system call.

5.1.2 audio play state t
The following values can be returned by the AUDIO GET STATUS call representing
the state of audio playback.

typedef enum {
AUDIO_STOPPED,
AUDIO_PLAYING,
AUDIO_PAUSED

} audio_play_state_t;

49

50 DVB AUDIO DEVICE

5.1.3 audio channel select t

The audio channel selected via AUDIO CHANNEL SELECT is determined by the
following values.

typedef enum {
AUDIO_STEREO,
AUDIO_MONO_LEFT,
AUDIO_MONO_RIGHT,

} audio_channel_select_t;

5.1.4 struct audio status

The AUDIO GET STATUS call returns the following structure informing about vari-
ous states of the playback operation.

typedef struct audio_status {
boolean AV_sync_state;
boolean mute_state;
audio_play_state_t play_state;
audio_stream_source_t stream_source;
audio_channel_select_t channel_select;
boolean bypass_mode;

} audio_status_t;

5.1.5 struct audio mixer

The following structure is used by the AUDIO SET MIXER call to set the audio vol-
ume.

typedef struct audio_mixer {
unsigned int volume_left;
unsigned int volume_right;

} audio_mixer_t;

5.1.6 audio encodings

A call to AUDIO GET CAPABILITIES returns an unsigned integer with the following
bits set according to the hardwares capabilities.

#define AUDIO_CAP_DTS 1
#define AUDIO_CAP_LPCM 2
#define AUDIO_CAP_MP1 4
#define AUDIO_CAP_MP2 8
#define AUDIO_CAP_MP3 16
#define AUDIO_CAP_AAC 32
#define AUDIO_CAP_OGG 64
#define AUDIO_CAP_SDDS 128
#define AUDIO_CAP_AC3 256

50

5.1. Audio Data Types 51

5.1.7 struct audio karaoke
The ioctl AUDIO SET KARAOKE uses the following format:

typedef
struct audio_karaoke{

int vocal1;
int vocal2;
int melody;

} audio_karaoke_t;

If Vocal1 or Vocal2 are non-zero, they get mixed into left and right t at 70% each.
If both, Vocal1 and Vocal2 are non-zero, Vocal1 gets mixed into the left channel and
Vocal2 into the right channel at 100% each. Ff Melody is non-zero, the melody channel
gets mixed into left and right.

5.1.8 audio attributes
The following attributes can be set by a call to AUDIO SET ATTRIBUTES:

typedef uint16_t audio_attributes_t;
/* bits: descr. */
/* 15-13 audio coding mode (0=ac3, 2=mpeg1, 3=mpeg2ext, 4=LPCM, 6=DTS, */
/* 12 multichannel extension */
/* 11-10 audio type (0=not spec, 1=language included) */
/* 9- 8 audio application mode (0=not spec, 1=karaoke, 2=surround) */
/* 7- 6 Quantization / DRC (mpeg audio: 1=DRC exists)(lpcm: 0=16bit, */
/* 5- 4 Sample frequency fs (0=48kHz, 1=96kHz) */
/* 2- 0 number of audio channels (n+1 channels) */

51

52 DVB AUDIO DEVICE

5.2 Audio Function Calls

5.2.1 open()
DESCRIPTION

This system call opens a named audio device (e.g. /dev/dvb/adapter0/audio0)
for subsequent use. When an open() call has succeeded, the device will be
ready for use. The significance of blocking or non-blocking mode is described
in the documentation for functions where there is a difference. It does not
affect the semantics of the open() call itself. A device opened in blocking
mode can later be put into non-blocking mode (and vice versa) using the
F SETFL command of the fcntl system call. This is a standard system call,
documented in the Linux manual page for fcntl. Only one user can open the
Audio Device in O RDWR mode. All other attempts to open the device in
this mode will fail, and an error code will be returned. If the Audio Device
is opened in O RDONLY mode, the only ioctl call that can be used is AU-
DIO GET STATUS. All other call will return with an error code.

SYNOPSIS

int open(const char *deviceName, int flags);

PARAMETERS

const char *device-
Name

Name of specific audio device.

int flags A bit-wise OR of the following flags:
O RDONLY read-only access
O RDWR read/write access
O NONBLOCK open in non-blocking mode
(blocking mode is the default)

ERRORS

ENODEV Device driver not loaded/available.
EINTERNAL Internal error.
EBUSY Device or resource busy.
EINVAL Invalid argument.

5.2.2 close()
DESCRIPTION

This system call closes a previously opened audio device.

SYNOPSIS

int close(int fd);

PARAMETERS

int fd File descriptor returned by a previous call to open().

ERRORS

EBADF fd is not a valid open file descriptor.

52

5.2. Audio Function Calls 53

5.2.3 write()
DESCRIPTION

This system call can only be used if AUDIO SOURCE MEMORY is selected
in the ioctl call AUDIO SELECT SOURCE. The data provided shall be in PES
format. If O NONBLOCK is not specified the function will block until buffer
space is available. The amount of data to be transferred is implied by count.

SYNOPSIS

size t write(int fd, const void *buf, size t count);

PARAMETERS

int fd File descriptor returned by a previous call to open().
void *buf Pointer to the buffer containing the PES data.
size t count Size of buf.

ERRORS

EPERM Mode AUDIO SOURCE MEMORY not selected.
ENOMEM Attempted to write more data than the internal buffer can

hold.
EBADF fd is not a valid open file descriptor.

5.2.4 AUDIO STOP
DESCRIPTION

This ioctl call asks the Audio Device to stop playing the current stream.

SYNOPSIS

int ioctl(int fd, int request = AUDIO STOP);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO STOP for this command.

ERRORS

EBADF fd is not a valid open file descriptor
EINTERNAL Internal error.

5.2.5 AUDIO PLAY
DESCRIPTION

This ioctl call asks the Audio Device to start playing an audio stream from the
selected source.

SYNOPSIS

int ioctl(int fd, int request = AUDIO PLAY);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO PLAY for this command.

53

54 DVB AUDIO DEVICE

ERRORS

EBADF fd is not a valid open file descriptor
EINTERNAL Internal error.

5.2.6 AUDIO PAUSE
DESCRIPTION

This ioctl call suspends the audio stream being played. Decoding and playing
are paused. It is then possible to restart again decoding and playing process of
the audio stream using AUDIO CONTINUE command.
If AUDIO SOURCE MEMORY is selected in the ioctl call AU-
DIO SELECT SOURCE, the DVB-subsystem will not decode (consume)
any more data until the ioctl call AUDIO CONTINUE or AUDIO PLAY is
performed.

SYNOPSIS

int ioctl(int fd, int request = AUDIO PAUSE);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO PAUSE for this command.

ERRORS

EBADF fd is not a valid open file descriptor.
EINTERNAL Internal error.

5.2.7 AUDIO SELECT SOURCE
DESCRIPTION

This ioctl call informs the audio device which source shall be used for
the input data. The possible sources are demux or memory. If AU-
DIO SOURCE MEMORY is selected, the data is fed to the Audio Device
through the write command.

SYNOPSIS

int ioctl(int fd, int request = AUDIO SELECT SOURCE,
audio stream source t source);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO SELECT SOURCE for this command.
audio stream source t
source

Indicates the source that shall be used for the Audio
stream.

ERRORS

EBADF fd is not a valid open file descriptor.
EINTERNAL Internal error.
EINVAL Illegal input parameter.

54

5.2. Audio Function Calls 55

5.2.8 AUDIO SET MUTE
DESCRIPTION

This ioctl call asks the audio device to mute the stream that is currently being
played.

SYNOPSIS
int ioctl(int fd, int request = AUDIO SET MUTE,
boolean state);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals AUDIO SET MUTE for this command.
boolean state Indicates if audio device shall mute or not.

TRUE Audio Mute
FALSE Audio Un-mute

ERRORS
EBADF fd is not a valid open file descriptor.
EINTERNAL Internal error.
EINVAL Illegal input parameter.

5.2.9 AUDIO SET AV SYNC
DESCRIPTION

This ioctl call asks the Audio Device to turn ON or OFF A/V synchronization.

SYNOPSIS
int ioctl(int fd, int request = AUDIO SET AV SYNC,
boolean state);

PARAMETERS
int fd File descriptor returned by a previous call to open().
int request Equals AUDIO AV SYNC for this command.
boolean state Tells the DVB subsystem if A/V synchronization shall be

ON or OFF.
TRUE AV-sync ON
FALSE AV-sync OFF

ERRORS
EBADF fd is not a valid open file descriptor.
EINTERNAL Internal error.
EINVAL Illegal input parameter.

5.2.10 AUDIO SET BYPASS MODE
DESCRIPTION

This ioctl call asks the Audio Device to bypass the Audio decoder and forward
the stream without decoding. This mode shall be used if streams that can’t be
handled by the DVB system shall be decoded. Dolby DigitalTM streams are
automatically forwarded by the DVB subsystem if the hardware can handle it.

55

56 DVB AUDIO DEVICE

SYNOPSIS

int ioctl(int fd, int request =
AUDIO SET BYPASS MODE, boolean mode);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO SET BYPASS MODE for this com-

mand.
boolean mode Enables or disables the decoding of the current Audio

stream in the DVB subsystem.
TRUE Bypass is disabled
FALSE Bypass is enabled

ERRORS

EBADF fd is not a valid open file descriptor.
EINTERNAL Internal error.
EINVAL Illegal input parameter.

5.2.11 AUDIO CHANNEL SELECT
DESCRIPTION

This ioctl call asks the Audio Device to select the requested channel if possible.

SYNOPSIS

int ioctl(int fd, int request =
AUDIO CHANNEL SELECT, audio channel select t);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO CHANNEL SELECT for this command.
audio channel select t
ch

Select the output format of the audio (mono left/right,
stereo).

ERRORS

EBADF fd is not a valid open file descriptor.
EINTERNAL Internal error.
EINVAL Illegal input parameter ch.

5.2.12 AUDIO GET STATUS
DESCRIPTION

This ioctl call asks the Audio Device to return the current state of the Audio
Device.

SYNOPSIS

int ioctl(int fd, int request = AUDIO GET STATUS,
struct audio status *status);

PARAMETERS

56

5.2. Audio Function Calls 57

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO GET STATUS for this command.
struct audio status
*status

Returns the current state of Audio Device.

ERRORS

EBADF fd is not a valid open file descriptor.
EINTERNAL Internal error.
EFAULT status points to invalid address.

5.2.13 AUDIO GET CAPABILITIES

DESCRIPTION

This ioctl call asks the Audio Device to tell us about the decoding capabilities
of the audio hardware.

SYNOPSIS

int ioctl(int fd, int request =
AUDIO GET CAPABILITIES, unsigned int *cap);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO GET CAPABILITIES for this command.
unsigned int *cap Returns a bit array of supported sound formats.

ERRORS

EBADF fd is not a valid open file descriptor.
EINTERNAL Internal error.
EFAULT cap points to an invalid address.

5.2.14 AUDIO CLEAR BUFFER

DESCRIPTION

This ioctl call asks the Audio Device to clear all software and hardware buffers
of the audio decoder device.

SYNOPSIS

int ioctl(int fd, int request = AUDIO CLEAR BUFFER);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO CLEAR BUFFER for this command.

ERRORS

EBADF fd is not a valid open file descriptor.
EINTERNAL Internal error.

57

58 DVB AUDIO DEVICE

5.2.15 AUDIO SET ID
DESCRIPTION

This ioctl selects which sub-stream is to be decoded if a program or system
stream is sent to the video device. If no audio stream type is set the id has to be
in [0xC0,0xDF] for MPEG sound, in [0x80,0x87] for AC3 and in [0xA0,0xA7]
for LPCM. More specifications may follow for other stream types. If the stream
type is set the id just specifies the substream id of the audio stream and only
the first 5 bits are recognized.

SYNOPSIS

int ioctl(int fd, int request = AUDIO SET ID, int
id);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO SET ID for this command.
int id audio sub-stream id

ERRORS

EBADF fd is not a valid open file descriptor.
EINTERNAL Internal error.
EINVAL Invalid sub-stream id.

5.2.16 AUDIO SET MIXER
DESCRIPTION

This ioctl lets you adjust the mixer settings of the audio decoder.

SYNOPSIS

int ioctl(int fd, int request = AUDIO SET MIXER,
audio mixer t *mix);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO SET ID for this command.
audio mixer t *mix mixer settings.

ERRORS

EBADF fd is not a valid open file descriptor.
EINTERNAL Internal error.
EFAULT mix points to an invalid address.

5.2.17 AUDIO SET STREAMTYPE
DESCRIPTION

This ioctl tells the driver which kind of audio stream to expect. This is useful
if the stream offers several audio sub-streams like LPCM and AC3.

SYNOPSIS

58

5.2. Audio Function Calls 59

int ioctl(fd, int request = AUDIO SET STREAMTYPE,
int type);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO SET STREAMTYPE for this command.
int type stream type

ERRORS

EBADF fd is not a valid open file descriptor
EINVAL type is not a valid or supported stream type.

5.2.18 AUDIO SET EXT ID
DESCRIPTION

This ioctl can be used to set the extension id for MPEG streams in DVD play-
back. Only the first 3 bits are recognized.

SYNOPSIS

int ioctl(fd, int request = AUDIO SET EXT ID, int
id);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO SET EXT ID for this command.
int id audio sub stream id

ERRORS

EBADF fd is not a valid open file descriptor
EINVAL id is not a valid id.

5.2.19 AUDIO SET ATTRIBUTES
DESCRIPTION

This ioctl is intended for DVD playback and allows you to set certain informa-
tion about the audio stream.

SYNOPSIS

int ioctl(fd, int request = AUDIO SET ATTRIBUTES,
audio attributes t attr);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO SET ATTRIBUTES for this command.
audio attributes t attr audio attributes according to section 5.1.8

ERRORS

EBADF fd is not a valid open file descriptor
EINVAL attr is not a valid or supported attribute setting.

59

60 DVB AUDIO DEVICE

5.2.20 AUDIO SET KARAOKE
DESCRIPTION

This ioctl allows one to set the mixer settings for a karaoke DVD.

SYNOPSIS

int ioctl(fd, int request = AUDIO SET STREAMTYPE,
audio karaoke t *karaoke);

PARAMETERS

int fd File descriptor returned by a previous call to open().
int request Equals AUDIO SET STREAMTYPE for this command.
audio karaoke t
*karaoke

karaoke settings according to section 5.1.7.

ERRORS

EBADF fd is not a valid open file descriptor
EINVAL karaoke is not a valid or supported karaoke setting.

60

61

Chapter 6

DVB CA Device

The DVB CA device controls the conditional access hardware. It can be accessed
through /dev/dvb/adapter0/ca0. Data types and and ioctl definitions can be
accessed by including linux/dvb/ca.h in your application.

6.1 CA Data Types

6.1.1 ca slot info t

/* slot interface types and info */

typedef struct ca_slot_info_s {
int num; /* slot number */

int type; /* CA interface this slot supports */
#define CA_CI 1 /* CI high level interface */
#define CA_CI_LINK 2 /* CI link layer level interface */
#define CA_CI_PHYS 4 /* CI physical layer level interface */
#define CA_SC 128 /* simple smart card interface */

unsigned int flags;
#define CA_CI_MODULE_PRESENT 1 /* module (or card) inserted */
#define CA_CI_MODULE_READY 2
} ca_slot_info_t;

6.1.2 ca descr info t

typedef struct ca_descr_info_s {
unsigned int num; /* number of available descramblers (keys) */
unsigned int type; /* type of supported scrambling system */

#define CA_ECD 1
#define CA_NDS 2
#define CA_DSS 4
} ca_descr_info_t;

61

62 DVB CA DEVICE

6.1.3 ca cap t
typedef struct ca_cap_s {

unsigned int slot_num; /* total number of CA card and module slots */
unsigned int slot_type; /* OR of all supported types */
unsigned int descr_num; /* total number of descrambler slots (keys) */
unsigned int descr_type;/* OR of all supported types */

} ca_cap_t;

6.1.4 ca msg t
/* a message to/from a CI-CAM */
typedef struct ca_msg_s {

unsigned int index;
unsigned int type;
unsigned int length;
unsigned char msg[256];

} ca_msg_t;

6.1.5 ca descr t
typedef struct ca_descr_s {

unsigned int index;
unsigned int parity;
unsigned char cw[8];

} ca_descr_t;

62

6.2. CA Function Calls 63

6.2 CA Function Calls

6.2.1 open()
DESCRIPTION

This system call opens a named ca device (e.g. /dev/ost/ca) for subsequent use.
When an open() call has succeeded, the device will be ready for use. The sig-
nificance of blocking or non-blocking mode is described in the documentation
for functions where there is a difference. It does not affect the semantics of
the open() call itself. A device opened in blocking mode can later be put into
non-blocking mode (and vice versa) using the F SETFL command of the fcntl
system call. This is a standard system call, documented in the Linux manual
page for fcntl. Only one user can open the CA Device in O RDWR mode. All
other attempts to open the device in this mode will fail, and an error code will
be returned.

SYNOPSIS

int open(const char *deviceName, int flags);

PARAMETERS

const char *device-
Name

Name of specific video device.

int flags A bit-wise OR of the following flags:
O RDONLY read-only access
O RDWR read/write access
O NONBLOCK open in non-blocking mode
(blocking mode is the default)

ERRORS

ENODEV Device driver not loaded/available.
EINTERNAL Internal error.
EBUSY Device or resource busy.
EINVAL Invalid argument.

6.2.2 close()
DESCRIPTION

This system call closes a previously opened audio device.

SYNOPSIS

int close(int fd);

PARAMETERS

int fd File descriptor returned by a previous call to open().

ERRORS

EBADF fd is not a valid open file descriptor.

63

64 DVB CA DEVICE

64

65

Chapter 7

DVB Network API

The DVB net device enables feeding of MPE (multi protocol encapsulation) packets
received via DVB into the Linux network protocol stack, e.g. for internet via satellite
applications. It can be accessed through /dev/dvb/adapter0/net0. Data types
and and ioctl definitions can be accessed by including linux/dvb/net.h in your
application.

7.1 DVB Net Data Types
To be written. . .

65

66 DVB NETWORK API

66

67

Chapter 8

Kernel Demux API

The kernel demux API defines a driver-internal interface for registering low-level, hard-
ware specific driver to a hardware independent demux layer. It is only of interest for
DVB device driver writers. The header file for this API is named demux.h and located
in drivers/media/dvb/dvb-core.

Maintainer note: This section must be reviewed. It is probably out of date.

8.1 Kernel Demux Data Types

8.1.1 dmx success t

typedef enum {
DMX_OK = 0, /* Received Ok */
DMX_LENGTH_ERROR, /* Incorrect length */
DMX_OVERRUN_ERROR, /* Receiver ring buffer overrun */
DMX_CRC_ERROR, /* Incorrect CRC */
DMX_FRAME_ERROR, /* Frame alignment error */
DMX_FIFO_ERROR, /* Receiver FIFO overrun */
DMX_MISSED_ERROR /* Receiver missed packet */

} dmx_success_t;

8.1.2 TS filter types

/*--*/
/* TS packet reception */
/*--*/

/* TS filter type for set_type() */

#define TS_PACKET 1 /* send TS packets (188 bytes) to callback (default) */
#define TS_PAYLOAD_ONLY 2 /* in case TS_PACKET is set, only send the TS

payload (<=184 bytes per packet) to callback */
#define TS_DECODER 4 /* send stream to built-in decoder (if present) */

67

68 KERNEL DEMUX API

8.1.3 dmx ts pes t
The structure

typedef enum
{

DMX_TS_PES_AUDIO, /* also send packets to audio decoder (if it exists) */
DMX_TS_PES_VIDEO, /* ... */
DMX_TS_PES_TELETEXT,
DMX_TS_PES_SUBTITLE,
DMX_TS_PES_PCR,
DMX_TS_PES_OTHER,

} dmx_ts_pes_t;

describes the PES type for filters which write to a built-in decoder. The correspond
(and should be kept identical) to the types in the demux device.

struct dmx_ts_feed_s {
int is_filtering; /* Set to non-zero when filtering in progress */
struct dmx_demux_s* parent; /* Back-pointer */
void* priv; /* Pointer to private data of the API client */
int (*set) (struct dmx_ts_feed_s* feed,

__u16 pid,
size_t callback_length,
size_t circular_buffer_size,
int descramble,
struct timespec timeout);

int (*start_filtering) (struct dmx_ts_feed_s* feed);
int (*stop_filtering) (struct dmx_ts_feed_s* feed);
int (*set_type) (struct dmx_ts_feed_s* feed,

int type,
dmx_ts_pes_t pes_type);

};

typedef struct dmx_ts_feed_s dmx_ts_feed_t;

/*--*/
/* PES packet reception (not supported yet) */
/*--*/

typedef struct dmx_pes_filter_s {
struct dmx_pes_s* parent; /* Back-pointer */
void* priv; /* Pointer to private data of the API client */

} dmx_pes_filter_t;

typedef struct dmx_pes_feed_s {
int is_filtering; /* Set to non-zero when filtering in progress */
struct dmx_demux_s* parent; /* Back-pointer */
void* priv; /* Pointer to private data of the API client */
int (*set) (struct dmx_pes_feed_s* feed,

__u16 pid,
size_t circular_buffer_size,

68

8.1. Kernel Demux Data Types 69

int descramble,
struct timespec timeout);

int (*start_filtering) (struct dmx_pes_feed_s* feed);
int (*stop_filtering) (struct dmx_pes_feed_s* feed);
int (*allocate_filter) (struct dmx_pes_feed_s* feed,

dmx_pes_filter_t** filter);
int (*release_filter) (struct dmx_pes_feed_s* feed,

dmx_pes_filter_t* filter);
} dmx_pes_feed_t;

typedef struct {
__u8 filter_value [DMX_MAX_FILTER_SIZE];
__u8 filter_mask [DMX_MAX_FILTER_SIZE];
struct dmx_section_feed_s* parent; /* Back-pointer */
void* priv; /* Pointer to private data of the API client */

} dmx_section_filter_t;

struct dmx_section_feed_s {
int is_filtering; /* Set to non-zero when filtering in progress */
struct dmx_demux_s* parent; /* Back-pointer */
void* priv; /* Pointer to private data of the API client */
int (*set) (struct dmx_section_feed_s* feed,

__u16 pid,
size_t circular_buffer_size,
int descramble,
int check_crc);

int (*allocate_filter) (struct dmx_section_feed_s* feed,
dmx_section_filter_t** filter);

int (*release_filter) (struct dmx_section_feed_s* feed,
dmx_section_filter_t* filter);

int (*start_filtering) (struct dmx_section_feed_s* feed);
int (*stop_filtering) (struct dmx_section_feed_s* feed);

};
typedef struct dmx_section_feed_s dmx_section_feed_t;

/*--*/
/* Callback functions */
/*--*/

typedef int (*dmx_ts_cb) (__u8 * buffer1,
size_t buffer1_length,
__u8 * buffer2,
size_t buffer2_length,
dmx_ts_feed_t* source,
dmx_success_t success);

typedef int (*dmx_section_cb) (__u8 * buffer1,
size_t buffer1_len,
__u8 * buffer2,
size_t buffer2_len,

69

70 KERNEL DEMUX API

dmx_section_filter_t * source,
dmx_success_t success);

typedef int (*dmx_pes_cb) (__u8 * buffer1,
size_t buffer1_len,
__u8 * buffer2,
size_t buffer2_len,
dmx_pes_filter_t* source,
dmx_success_t success);

/*--*/
/* DVB Front-End */
/*--*/

typedef enum {
DMX_OTHER_FE = 0,
DMX_SATELLITE_FE,
DMX_CABLE_FE,
DMX_TERRESTRIAL_FE,
DMX_LVDS_FE,
DMX_ASI_FE, /* DVB-ASI interface */
DMX_MEMORY_FE

} dmx_frontend_source_t;

typedef struct {
/* The following char* fields point to NULL terminated strings */
char* id; /* Unique front-end identifier */
char* vendor; /* Name of the front-end vendor */
char* model; /* Name of the front-end model */
struct list_head connectivity_list; /* List of front-ends that can

be connected to a particular
demux */

void* priv; /* Pointer to private data of the API client */
dmx_frontend_source_t source;

} dmx_frontend_t;

/*--*/
/* MPEG-2 TS Demux */
/*--*/

/*
* Flags OR’ed in the capabilites field of struct dmx_demux_s.
*/

#define DMX_TS_FILTERING 1
#define DMX_PES_FILTERING 2
#define DMX_SECTION_FILTERING 4
#define DMX_MEMORY_BASED_FILTERING 8 /* write() available */
#define DMX_CRC_CHECKING 16
#define DMX_TS_DESCRAMBLING 32

70

8.1. Kernel Demux Data Types 71

#define DMX_SECTION_PAYLOAD_DESCRAMBLING 64
#define DMX_MAC_ADDRESS_DESCRAMBLING 128

8.1.4 demux demux t
/*
* DMX_FE_ENTRY(): Casts elements in the list of registered
* front-ends from the generic type struct list_head
* to the type * dmx_frontend_t
*.

*/

#define DMX_FE_ENTRY(list) list_entry(list, dmx_frontend_t, connectivity_list)

struct dmx_demux_s {
/* The following char* fields point to NULL terminated strings */
char* id; /* Unique demux identifier */
char* vendor; /* Name of the demux vendor */
char* model; /* Name of the demux model */
__u32 capabilities; /* Bitfield of capability flags */
dmx_frontend_t* frontend; /* Front-end connected to the demux */
struct list_head reg_list; /* List of registered demuxes */
void* priv; /* Pointer to private data of the API client */
int users; /* Number of users */
int (*open) (struct dmx_demux_s* demux);
int (*close) (struct dmx_demux_s* demux);
int (*write) (struct dmx_demux_s* demux, const char* buf, size_t count);
int (*allocate_ts_feed) (struct dmx_demux_s* demux,

dmx_ts_feed_t** feed,
dmx_ts_cb callback);

int (*release_ts_feed) (struct dmx_demux_s* demux,
dmx_ts_feed_t* feed);

int (*allocate_pes_feed) (struct dmx_demux_s* demux,
dmx_pes_feed_t** feed,
dmx_pes_cb callback);

int (*release_pes_feed) (struct dmx_demux_s* demux,
dmx_pes_feed_t* feed);

int (*allocate_section_feed) (struct dmx_demux_s* demux,
dmx_section_feed_t** feed,
dmx_section_cb callback);

int (*release_section_feed) (struct dmx_demux_s* demux,
dmx_section_feed_t* feed);

int (*descramble_mac_address) (struct dmx_demux_s* demux,
__u8* buffer1,
size_t buffer1_length,
__u8* buffer2,
size_t buffer2_length,
__u16 pid);

int (*descramble_section_payload) (struct dmx_demux_s* demux,
__u8* buffer1,

71

72 KERNEL DEMUX API

size_t buffer1_length,
__u8* buffer2, size_t buffer2_length,
__u16 pid);

int (*add_frontend) (struct dmx_demux_s* demux,
dmx_frontend_t* frontend);

int (*remove_frontend) (struct dmx_demux_s* demux,
dmx_frontend_t* frontend);

struct list_head* (*get_frontends) (struct dmx_demux_s* demux);
int (*connect_frontend) (struct dmx_demux_s* demux,

dmx_frontend_t* frontend);
int (*disconnect_frontend) (struct dmx_demux_s* demux);

/* added because js cannot keep track of these himself */
int (*get_pes_pids) (struct dmx_demux_s* demux, __u16 *pids);

};
typedef struct dmx_demux_s dmx_demux_t;

8.1.5 Demux directory
/*
* DMX_DIR_ENTRY(): Casts elements in the list of registered
* demuxes from the generic type struct list_head* to the type dmx_demux_t
*.
*/

#define DMX_DIR_ENTRY(list) list_entry(list, dmx_demux_t, reg_list)

int dmx_register_demux (dmx_demux_t* demux);
int dmx_unregister_demux (dmx_demux_t* demux);
struct list_head* dmx_get_demuxes (void);

72

8.2. Demux Directory API 73

8.2 Demux Directory API
The demux directory is a Linux kernel-wide facility for registering and accessing the
MPEG-2 TS demuxes in the system. Run-time registering and unregistering of demux
drivers is possible using this API.

All demux drivers in the directory implement the abstract interface dmx demux t.

8.2.1 dmx register demux()
DESCRIPTION

This function makes a demux driver interface available to the Linux kernel. It
is usually called by the init module() function of the kernel module that con-
tains the demux driver. The caller of this function is responsible for allocating
dynamic or static memory for the demux structure and for initializing its fields
before calling this function. The memory allocated for the demux structure
must not be freed before calling dmx unregister demux(),

SYNOPSIS

int dmx register demux (dmx demux t *demux)

PARAMETERS

dmx demux t*
demux

Pointer to the demux structure.

RETURNS

0 The function was completed without errors.
-EEXIST A demux with the same value of the id field already stored

in the directory.
-ENOSPC No space left in the directory.

8.2.2 dmx unregister demux()
DESCRIPTION

This function is called to indicate that the given demux interface is no longer
available. The caller of this function is responsible for freeing the mem-
ory of the demux structure, if it was dynamically allocated before calling
dmx register demux(). The cleanup module() function of the kernel module
that contains the demux driver should call this function. Note that this function
fails if the demux is currently in use, i.e., release demux() has not been called
for the interface.

SYNOPSIS

int dmx unregister demux (dmx demux t *demux)

PARAMETERS

dmx demux t*
demux

Pointer to the demux structure which is to be unregis-
tered.

RETURNS

73

74 KERNEL DEMUX API

0 The function was completed without errors.
ENODEV The specified demux is not registered in the demux direc-

tory.
EBUSY The specified demux is currently in use.

8.2.3 dmx get demuxes()
DESCRIPTION

Provides the caller with the list of registered demux interfaces, using the stan-
dard list structure defined in the include file linux/list.h. The include file de-
mux.h defines the macro DMX DIR ENTRY() for converting an element of
the generic type struct list head* to the type dmx demux t*. The caller must
not free the memory of any of the elements obtained via this function call.

SYNOPSIS

struct list head *dmx get demuxes ()

PARAMETERS

none

RETURNS

struct list head * A list of demux interfaces, or NULL in the case of an
empty list.

74

8.3. Demux API 75

8.3 Demux API

The demux API should be implemented for each demux in the system. It is used to
select the TS source of a demux and to manage the demux resources. When the demux
client allocates a resource via the demux API, it receives a pointer to the API of that
resource.

Each demux receives its TS input from a DVB front-end or from memory, as set
via the demux API. In a system with more than one front-end, the API can be used to
select one of the DVB front-ends as a TS source for a demux, unless this is fixed in
the HW platform. The demux API only controls front-ends regarding their connections
with demuxes; the APIs used to set the other front-end parameters, such as tuning, are
not defined in this document.

The functions that implement the abstract interface demux should be defined static
or module private and registered to the Demux Directory for external access. It is not
necessary to implement every function in the demux t struct, however (for example, a
demux interface might support Section filtering, but not TS or PES filtering). The API
client is expected to check the value of any function pointer before calling the function:
the value of NULL means “function not available”.

Whenever the functions of the demux API modify shared data, the possibilities of
lost update and race condition problems should be addressed, e.g. by protecting parts
of code with mutexes. This is especially important on multi-processor hosts.

Note that functions called from a bottom half context must not sleep, at least in the
2.2.x kernels. Even a simple memory allocation can result in a kernel thread being put
to sleep if swapping is needed. For example, the Linux kernel calls the functions of a
network device interface from a bottom half context. Thus, if a demux API function is
called from network device code, the function must not sleep.

8.3.1 open()

DESCRIPTION

This function reserves the demux for use by the caller and, if necessary, ini-
tializes the demux. When the demux is no longer needed, the function close()
should be called. It should be possible for multiple clients to access the de-
mux at the same time. Thus, the function implementation should increment
the demux usage count when open() is called and decrement it when close() is
called.

SYNOPSIS

int open (demux t* demux);

PARAMETERS

demux t* demux Pointer to the demux API and instance data.

RETURNS

0 The function was completed without errors.
-EUSERS Maximum usage count reached.
-EINVAL Bad parameter.

75

76 KERNEL DEMUX API

8.3.2 close()

DESCRIPTION

This function reserves the demux for use by the caller and, if necessary, ini-
tializes the demux. When the demux is no longer needed, the function close()
should be called. It should be possible for multiple clients to access the de-
mux at the same time. Thus, the function implementation should increment
the demux usage count when open() is called and decrement it when close() is
called.

SYNOPSIS

int close(demux t* demux);

PARAMETERS

demux t* demux Pointer to the demux API and instance data.

RETURNS

0 The function was completed without errors.
-ENODEV The demux was not in use.
-EINVAL Bad parameter.

8.3.3 write()

DESCRIPTION

This function provides the demux driver with a memory buffer containing TS
packets. Instead of receiving TS packets from the DVB front-end, the demux
driver software will read packets from memory. Any clients of this demux
with active TS, PES or Section filters will receive filtered data via the Demux
callback API (see 0). The function returns when all the data in the buffer has
been consumed by the demux. Demux hardware typically cannot read TS from
memory. If this is the case, memory-based filtering has to be implemented
entirely in software.

SYNOPSIS

int write(demux t* demux, const char* buf, size t
count);

PARAMETERS

demux t* demux Pointer to the demux API and instance data.
const char* buf Pointer to the TS data in kernel-space memory.
size t length Length of the TS data.

RETURNS

0 The function was completed without errors.
-ENOSYS The command is not implemented.
-EINVAL Bad parameter.

76

8.3. Demux API 77

8.3.4 allocate ts feed()
DESCRIPTION

Allocates a new TS feed, which is used to filter the TS packets carrying a
certain PID. The TS feed normally corresponds to a hardware PID filter on the
demux chip.

SYNOPSIS

int allocate ts feed(dmx demux t* demux,
dmx ts feed t** feed, dmx ts cb callback);

PARAMETERS

demux t* demux Pointer to the demux API and instance data.
dmx ts feed t** feed Pointer to the TS feed API and instance data.
dmx ts cb callback Pointer to the callback function for passing received TS

packet

RETURNS

0 The function was completed without errors.
-EBUSY No more TS feeds available.
-ENOSYS The command is not implemented.
-EINVAL Bad parameter.

8.3.5 release ts feed()
DESCRIPTION

Releases the resources allocated with allocate ts feed(). Any filtering in
progress on the TS feed should be stopped before calling this function.

SYNOPSIS

int release ts feed(dmx demux t* demux, dmx ts feed t*
feed);

PARAMETERS

demux t* demux Pointer to the demux API and instance data.
dmx ts feed t* feed Pointer to the TS feed API and instance data.

RETURNS

0 The function was completed without errors.
-EINVAL Bad parameter.

8.3.6 allocate section feed()
DESCRIPTION

Allocates a new section feed, i.e. a demux resource for filtering and receiving
sections. On platforms with hardware support for section filtering, a section
feed is directly mapped to the demux HW. On other platforms, TS packets are
first PID filtered in hardware and a hardware section filter then emulated in
software. The caller obtains an API pointer of type dmx section feed t as an
out parameter. Using this API the caller can set filtering parameters and start
receiving sections.

77

78 KERNEL DEMUX API

SYNOPSIS

int allocate section feed(dmx demux t* demux,
dmx section feed t **feed, dmx section cb callback);

PARAMETERS

demux t *demux Pointer to the demux API and instance data.
dmx section feed t
**feed

Pointer to the section feed API and instance data.

dmx section cb call-
back

Pointer to the callback function for passing received sec-
tions.

RETURNS

0 The function was completed without errors.
-EBUSY No more section feeds available.
-ENOSYS The command is not implemented.
-EINVAL Bad parameter.

8.3.7 release section feed()
DESCRIPTION

Releases the resources allocated with allocate section feed(), including allo-
cated filters. Any filtering in progress on the section feed should be stopped
before calling this function.

SYNOPSIS

int release section feed(dmx demux t* demux,
dmx section feed t *feed);

PARAMETERS

demux t *demux Pointer to the demux API and instance data.
dmx section feed t
*feed

Pointer to the section feed API and instance data.

RETURNS

0 The function was completed without errors.
-EINVAL Bad parameter.

8.3.8 descramble mac address()
DESCRIPTION

This function runs a descrambling algorithm on the destination MAC ad-
dress field of a DVB Datagram Section, replacing the original address with
its un-encrypted version. Otherwise, the description on the function descram-
ble section payload() applies also to this function.

SYNOPSIS

int descramble mac address(dmx demux t* demux, u8
*buffer1, size t buffer1 length, u8 *buffer2, size t
buffer2 length, u16 pid);

PARAMETERS

78

8.3. Demux API 79

dmx demux t *de-
mux

Pointer to the demux API and instance data.

u8 *buffer1 Pointer to the first byte of the section.
size t buffer1 length Length of the section data, including headers and CRC,

in buffer1.
u8* buffer2 Pointer to the tail of the section data, or NULL. The

pointer has a non-NULL value if the section wraps past
the end of a circular buffer.

size t buffer2 length Length of the section data, including headers and CRC,
in buffer2.

u16 pid The PID on which the section was received. Useful for
obtaining the descrambling key, e.g. from a DVB Com-
mon Access facility.

RETURNS

0 The function was completed without errors.
-ENOSYS No descrambling facility available.
-EINVAL Bad parameter.

8.3.9 descramble section payload()

DESCRIPTION

This function runs a descrambling algorithm on the payload of a DVB Data-
gram Section, replacing the original payload with its un-encrypted version. The
function will be called from the demux API implementation; the API client
need not call this function directly. Section-level scrambling algorithms are
currently standardized only for DVB-RCC (return channel over 2-directional
cable TV network) systems. For all other DVB networks, encryption schemes
are likely to be proprietary to each data broadcaster. Thus, it is expected that
this function pointer will have the value of NULL (i.e., function not available)
in most demux API implementations. Nevertheless, it should be possible to use
the function pointer as a hook for dynamically adding a “plug-in” descrambling
facility to a demux driver.
While this function is not needed with hardware-based section descrambling,
the descramble section payload function pointer can be used to override the
default hardware-based descrambling algorithm: if the function pointer has a
non-NULL value, the corresponding function should be used instead of any
descrambling hardware.

SYNOPSIS

int descramble section payload(dmx demux t* demux,
u8 *buffer1, size t buffer1 length, u8 *buffer2,

size t buffer2 length, u16 pid);

PARAMETERS

79

80 KERNEL DEMUX API

dmx demux t *de-
mux

Pointer to the demux API and instance data.

u8 *buffer1 Pointer to the first byte of the section.
size t buffer1 length Length of the section data, including headers and CRC,

in buffer1.
u8 *buffer2 Pointer to the tail of the section data, or NULL. The

pointer has a non-NULL value if the section wraps past
the end of a circular buffer.

size t buffer2 length Length of the section data, including headers and CRC,
in buffer2.

u16 pid The PID on which the section was received. Useful for
obtaining the descrambling key, e.g. from a DVB Com-
mon Access facility.

RETURNS

0 The function was completed without errors.
-ENOSYS No descrambling facility available.
-EINVAL Bad parameter.

8.3.10 add frontend()

DESCRIPTION

Registers a connectivity between a demux and a front-end, i.e., indicates that
the demux can be connected via a call to connect frontend() to use the given
front-end as a TS source. The client of this function has to allocate dynamic or
static memory for the frontend structure and initialize its fields before calling
this function. This function is normally called during the driver initialization.
The caller must not free the memory of the frontend struct before successfully
calling remove frontend().

SYNOPSIS

int add frontend(dmx demux t *demux, dmx frontend t
*frontend);

PARAMETERS

dmx demux t*
demux

Pointer to the demux API and instance data.

dmx frontend t*
frontend

Pointer to the front-end instance data.

RETURNS

0 The function was completed without errors.
-EEXIST A front-end with the same value of the id field already

registered.
-EINUSE The demux is in use.
-ENOMEM No more front-ends can be added.
-EINVAL Bad parameter.

80

8.3. Demux API 81

8.3.11 remove frontend()
DESCRIPTION

Indicates that the given front-end, registered by a call to add frontend(), can
no longer be connected as a TS source by this demux. The function should be
called when a front-end driver or a demux driver is removed from the system.
If the front-end is in use, the function fails with the return value of -EBUSY.
After successfully calling this function, the caller can free the memory of the
frontend struct if it was dynamically allocated before the add frontend() oper-
ation.

SYNOPSIS

int remove frontend(dmx demux t* demux,
dmx frontend t* frontend);

PARAMETERS

dmx demux t*
demux

Pointer to the demux API and instance data.

dmx frontend t*
frontend

Pointer to the front-end instance data.

RETURNS

0 The function was completed without errors.
-EINVAL Bad parameter.
-EBUSY The front-end is in use, i.e. a call to connect frontend()

has not been followed by a call to disconnect frontend().

8.3.12 get frontends()
DESCRIPTION

Provides the APIs of the front-ends that have been registered for this demux.
Any of the front-ends obtained with this call can be used as a parameter for
connect frontend().
The include file demux.h contains the macro DMX FE ENTRY() for convert-
ing an element of the generic type struct list head* to the type dmx frontend t*.
The caller must not free the memory of any of the elements obtained via this
function call.

SYNOPSIS

struct list head* get frontends(dmx demux t* demux);

PARAMETERS

dmx demux t*
demux

Pointer to the demux API and instance data.

RETURNS

dmx demux t* A list of front-end interfaces, or NULL in the case of an
empty list.

81

82 KERNEL DEMUX API

8.3.13 connect frontend()
DESCRIPTION

Connects the TS output of the front-end to the input of the demux. A demux
can only be connected to a front-end registered to the demux with the function
add frontend().
It may or may not be possible to connect multiple demuxes to the same front-
end, depending on the capabilities of the HW platform. When not used, the
front-end should be released by calling disconnect frontend().

SYNOPSIS

int connect frontend(dmx demux t* demux,
dmx frontend t* frontend);

PARAMETERS

dmx demux t*
demux

Pointer to the demux API and instance data.

dmx frontend t*
frontend

Pointer to the front-end instance data.

RETURNS

0 The function was completed without errors.
-EINVAL Bad parameter.
-EBUSY The front-end is in use.

8.3.14 disconnect frontend()
DESCRIPTION

Disconnects the demux and a front-end previously connected by a con-
nect frontend() call.

SYNOPSIS

int disconnect frontend(dmx demux t* demux);

PARAMETERS

dmx demux t*
demux

Pointer to the demux API and instance data.

RETURNS

0 The function was completed without errors.
-EINVAL Bad parameter.

82

8.4. Demux Callback API 83

8.4 Demux Callback API

This kernel-space API comprises the callback functions that deliver filtered data to the
demux client. Unlike the other APIs, these API functions are provided by the client
and called from the demux code.

The function pointers of this abstract interface are not packed into a structure as
in the other demux APIs, because the callback functions are registered and used in-
dependent of each other. As an example, it is possible for the API client to provide
several callback functions for receiving TS packets and no callbacks for PES packets
or sections.

The functions that implement the callback API need not be re-entrant: when a
demux driver calls one of these functions, the driver is not allowed to call the function
again before the original call returns. If a callback is triggered by a hardware interrupt,
it is recommended to use the Linux “bottom half” mechanism or start a tasklet instead
of making the callback function call directly from a hardware interrupt.

8.4.1 dmx ts cb()

DESCRIPTION

83

84 KERNEL DEMUX API

This function, provided by the client of the demux API, is called from the
demux code. The function is only called when filtering on this TS feed has
been enabled using the start filtering() function.
Any TS packets that match the filter settings are copied to a circular buffer. The
filtered TS packets are delivered to the client using this callback function. The
size of the circular buffer is controlled by the circular buffer size parameter
of the set() function in the TS Feed API. It is expected that the buffer1 and
buffer2 callback parameters point to addresses within the circular buffer, but
other implementations are also possible. Note that the called party should not
try to free the memory the buffer1 and buffer2 parameters point to.
When this function is called, the buffer1 parameter typically points to the
start of the first undelivered TS packet within a circular buffer. The buffer2
buffer parameter is normally NULL, except when the received TS packets have
crossed the last address of the circular buffer and ”wrapped” to the beginning
of the buffer. In the latter case the buffer1 parameter would contain an address
within the circular buffer, while the buffer2 parameter would contain the first
address of the circular buffer.
The number of bytes delivered with this function (i.e. buffer1 length +
buffer2 length) is usually equal to the value of callback length parameter given
in the set() function, with one exception: if a timeout occurs before receiving
callback length bytes of TS data, any undelivered packets are immediately de-
livered to the client by calling this function. The timeout duration is controlled
by the set() function in the TS Feed API.
If a TS packet is received with errors that could not be fixed by the TS-level for-
ward error correction (FEC), the Transport error indicator flag of the TS packet
header should be set. The TS packet should not be discarded, as the error can
possibly be corrected by a higher layer protocol. If the called party is slow in
processing the callback, it is possible that the circular buffer eventually fills up.
If this happens, the demux driver should discard any TS packets received while
the buffer is full. The error should be indicated to the client on the next callback
by setting the success parameter to the value of DMX OVERRUN ERROR.
The type of data returned to the callback can be selected by the new function int
(*set type) (struct dmx ts feed s* feed, int type, dmx ts pes t pes type) which
is part of the dmx ts feed s struct (also cf. to the include file ost/demux.h)
The type parameter decides if the raw TS packet (TS PACKET) or just the
payload (TS PACKET—TS PAYLOAD ONLY) should be returned. If ad-
ditionally the TS DECODER bit is set the stream will also be sent to the
hardware MPEG decoder. In this case, the second flag decides as what kind
of data the stream should be interpreted. The possible choices are one of
DMX TS PES AUDIO, DMX TS PES VIDEO, DMX TS PES TELETEXT,
DMX TS PES SUBTITLE, DMX TS PES PCR, or DMX TS PES OTHER.

SYNOPSIS

int dmx ts cb(u8* buffer1, size t buffer1 length,
u8* buffer2, size t buffer2 length, dmx ts feed t*

source, dmx success t success);

PARAMETERS

84

8.4. Demux Callback API 85

u8* buffer1 Pointer to the start of the filtered TS packets.
size t buffer1 length Length of the TS data in buffer1.

u8* buffer2 Pointer to the tail of the filtered TS packets, or NULL.
size t buffer2 length Length of the TS data in buffer2.
dmx ts feed t*
source

Indicates which TS feed is the source of the callback.

dmx success t suc-
cess

Indicates if there was an error in TS reception.

RETURNS

0 Continue filtering.
-1 Stop filtering - has the same effect as a call to

stop filtering() on the TS Feed API.

8.4.2 dmx section cb()

DESCRIPTION

This function, provided by the client of the demux API, is called from the
demux code. The function is only called when filtering of sections has been
enabled using the function start filtering() of the section feed API. When the
demux driver has received a complete section that matches at least one section
filter, the client is notified via this callback function. Normally this function is
called for each received section; however, it is also possible to deliver multiple
sections with one callback, for example when the system load is high. If an
error occurs while receiving a section, this function should be called with the
corresponding error type set in the success field, whether or not there is data
to deliver. The Section Feed implementation should maintain a circular buffer
for received sections. However, this is not necessary if the Section Feed API
is implemented as a client of the TS Feed API, because the TS Feed imple-
mentation then buffers the received data. The size of the circular buffer can
be configured using the set() function in the Section Feed API. If there is no
room in the circular buffer when a new section is received, the section must
be discarded. If this happens, the value of the success parameter should be
DMX OVERRUN ERROR on the next callback.

SYNOPSIS

int dmx section cb(u8* buffer1, size t
buffer1 length, u8* buffer2, size t buffer2 length,
dmx section filter t* source, dmx success t success);

PARAMETERS

85

86 KERNEL DEMUX API

u8* buffer1 Pointer to the start of the filtered section, e.g. within the
circular buffer of the demux driver.

size t buffer1 length Length of the filtered section data in buffer1, including
headers and CRC.

u8* buffer2 Pointer to the tail of the filtered section data, or NULL.
Useful to handle the wrapping of a circular buffer.

size t buffer2 length Length of the filtered section data in buffer2, including
headers and CRC.

dmx section filter t*
filter

Indicates the filter that triggered the callback.

dmx success t suc-
cess

Indicates if there was an error in section reception.

RETURNS

0 Continue filtering.
-1 Stop filtering - has the same effect as a call to

stop filtering() on the Section Feed API.

86

8.5. TS Feed API 87

8.5 TS Feed API
A TS feed is typically mapped to a hardware PID filter on the demux chip. Using
this API, the client can set the filtering properties to start/stop filtering TS packets on a
particular TS feed. The API is defined as an abstract interface of the type dmx ts feed t.

The functions that implement the interface should be defined static or module pri-
vate. The client can get the handle of a TS feed API by calling the function allo-
cate ts feed() in the demux API.

8.5.1 set()
DESCRIPTION

This function sets the parameters of a TS feed. Any filtering in progress on the
TS feed must be stopped before calling this function.

SYNOPSIS

int set (dmx ts feed t* feed, u16 pid, size t
callback length, size t circular buffer size, int
descramble, struct timespec timeout);

PARAMETERS

dmx ts feed t* feed Pointer to the TS feed API and instance data.
u16 pid PID value to filter. Only the TS packets carrying the spec-

ified PID will be passed to the API client.
size t call-
back length

Number of bytes to deliver with each call to the
dmx ts cb() callback function. The value of this parame-
ter should be a multiple of 188.

size t circu-
lar buffer size

Size of the circular buffer for the filtered TS packets.

int descramble If non-zero, descramble the filtered TS packets.
struct timespec time-
out

Maximum time to wait before delivering received TS
packets to the client.

RETURNS

0 The function was completed without errors.
-ENOMEM Not enough memory for the requested buffer size.
-ENOSYS No descrambling facility available for TS.
-EINVAL Bad parameter.

8.5.2 start filtering()
DESCRIPTION

Starts filtering TS packets on this TS feed, according to its settings. The PID
value to filter can be set by the API client. All matching TS packets are deliv-
ered asynchronously to the client, using the callback function registered with
allocate ts feed().

SYNOPSIS

int start filtering(dmx ts feed t* feed);

PARAMETERS

87

88 KERNEL DEMUX API

dmx ts feed t* feed Pointer to the TS feed API and instance data.

RETURNS

0 The function was completed without errors.
-EINVAL Bad parameter.

8.5.3 stop filtering()
DESCRIPTION

Stops filtering TS packets on this TS feed.

SYNOPSIS

int stop filtering(dmx ts feed t* feed);

PARAMETERS

dmx ts feed t* feed Pointer to the TS feed API and instance data.

RETURNS

0 The function was completed without errors.
-EINVAL Bad parameter.

88

8.6. Section Feed API 89

8.6 Section Feed API

A section feed is a resource consisting of a PID filter and a set of section filters. Using
this API, the client can set the properties of a section feed and to start/stop filtering. The
API is defined as an abstract interface of the type dmx section feed t. The functions
that implement the interface should be defined static or module private. The client can
get the handle of a section feed API by calling the function allocate section feed() in
the demux API.

On demux platforms that provide section filtering in hardware, the Section Feed
API implementation provides a software wrapper for the demux hardware. Other plat-
forms may support only PID filtering in hardware, requiring that TS packets are con-
verted to sections in software. In the latter case the Section Feed API implementation
can be a client of the TS Feed API.

8.6.1 set()

DESCRIPTION

This function sets the parameters of a section feed. Any filtering in progress on
the section feed must be stopped before calling this function. If descrambling
is enabled, the payload scrambling control and address scrambling control
fields of received DVB datagram sections should be observed. If either one
is non-zero, the section should be descrambled either in hardware or using the
functions descramble mac address() and descramble section payload() of the
demux API. Note that according to the MPEG-2 Systems specification, only
the payloads of private sections can be scrambled while the rest of the section
data must be sent in the clear.

SYNOPSIS

int set(dmx section feed t* feed, u16 pid, size t
circular buffer size, int descramble, int check crc);

PARAMETERS

dmx section feed t*
feed

Pointer to the section feed API and instance data.

u16 pid PID value to filter; only the TS packets carrying the spec-
ified PID will be accepted.

size t circu-
lar buffer size

Size of the circular buffer for filtered sections.

int descramble If non-zero, descramble any sections that are scrambled.
int check crc If non-zero, check the CRC values of filtered sections.

RETURNS

0 The function was completed without errors.
-ENOMEM Not enough memory for the requested buffer size.
-ENOSYS No descrambling facility available for sections.
-EINVAL Bad parameters.

89

90 KERNEL DEMUX API

8.6.2 allocate filter()

DESCRIPTION

This function is used to allocate a section filter on the demux. It should only be
called when no filtering is in progress on this section feed. If a filter cannot be
allocated, the function fails with -ENOSPC. See in section 8.1.3 for the format
of the section filter.
The bitfields filter mask and filter value should only be modified when no fil-
tering is in progress on this section feed. filter mask controls which bits of
filter value are compared with the section headers/payload. On a binary value
of 1 in filter mask, the corresponding bits are compared. The filter only accepts
sections that are equal to filter value in all the tested bit positions. Any changes
to the values of filter mask and filter value are guaranteed to take effect only
when the start filtering() function is called next time. The parent pointer in the
struct is initialized by the API implementation to the value of the feed param-
eter. The priv pointer is not used by the API implementation, and can thus be
freely utilized by the caller of this function. Any data pointed to by the priv
pointer is available to the recipient of the dmx section cb() function call.
While the maximum section filter length (DMX MAX FILTER SIZE) is cur-
rently set at 16 bytes, hardware filters of that size are not available on all plat-
forms. Therefore, section filtering will often take place first in hardware, fol-
lowed by filtering in software for the header bytes that were not covered by a
hardware filter. The filter mask field can be checked to determine how many
bytes of the section filter are actually used, and if the hardware filter will suf-
fice. Additionally, software-only section filters can optionally be allocated to
clients when all hardware section filters are in use. Note that on most demux
hardware it is not possible to filter on the section length field of the section
header – thus this field is ignored, even though it is included in filter value and
filter mask fields.

SYNOPSIS

int allocate filter(dmx section feed t* feed,
dmx section filter t** filter);

PARAMETERS

dmx section feed t*
feed

Pointer to the section feed API and instance data.

dmx section filter t**
filter

Pointer to the allocated filter.

RETURNS

0 The function was completed without errors.
-ENOSPC No filters of given type and length available.
-EINVAL Bad parameters.

8.6.3 release filter()

DESCRIPTION

90

8.6. Section Feed API 91

This function releases all the resources of a previously allocated section filter.
The function should not be called while filtering is in progress on this section
feed. After calling this function, the caller should not try to dereference the
filter pointer.

SYNOPSIS

int release filter (dmx section feed t* feed,
dmx section filter t* filter);

PARAMETERS

dmx section feed t*
feed

Pointer to the section feed API and instance data.

dmx section filter t*
filter

I/O Pointer to the instance data of a section filter.

RETURNS

0 The function was completed without errors.
-ENODEV No such filter allocated.
-EINVAL Bad parameter.

8.6.4 start filtering()
DESCRIPTION

Starts filtering sections on this section feed, according to its settings. Sections
are first filtered based on their PID and then matched with the section filters
allocated for this feed. If the section matches the PID filter and at least one
section filter, it is delivered to the API client. The section is delivered asyn-
chronously using the callback function registered with allocate section feed().

SYNOPSIS

int start filtering (dmx section feed t* feed);

PARAMETERS

dmx section feed t*
feed

Pointer to the section feed API and instance data.

RETURNS

0 The function was completed without errors.
-EINVAL Bad parameter.

8.6.5 stop filtering()
DESCRIPTION

Stops filtering sections on this section feed. Note that any changes to the fil-
tering parameters (filter value, filter mask, etc.) should only be made when
filtering is stopped.

SYNOPSIS

int stop filtering (dmx section feed t* feed);

PARAMETERS

91

92 KERNEL DEMUX API

dmx section feed t*
feed

Pointer to the section feed API and instance data.

RETURNS

0 The function was completed without errors.
-EINVAL Bad parameter.

92

93

Chapter 9

Examples

In this section we would like to present some examples for using the DVB API.
Maintainer note: This section is out of date. Please refer to the sample programs

packaged with the driver distribution from http://linuxtv.org/.

9.1 Tuning
We will start with a generic tuning subroutine that uses the frontend and SEC, as well as
the demux devices. The example is given for QPSK tuners, but can easily be adjusted
for QAM.

#include <sys/ioctl.h>
#include <stdio.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <time.h>
#include <unistd.h>

#include <linux/dvb/dmx.h>
#include <linux/dvb/frontend.h>
#include <linux/dvb/sec.h>
#include <sys/poll.h>

#define DMX "/dev/dvb/adapter0/demux1"
#define FRONT "/dev/dvb/adapter0/frontend1"
#define SEC "/dev/dvb/adapter0/sec1"

/* routine for checking if we have a signal and other status information*/
int FEReadStatus(int fd, fe_status_t *stat)
{

int ans;

if ((ans = ioctl(fd,FE_READ_STATUS,stat) < 0)){
perror("FE READ STATUS: ");
return -1;

}

93

94 EXAMPLES

if (*stat & FE_HAS_POWER)
printf("FE HAS POWER\n");

if (*stat & FE_HAS_SIGNAL)
printf("FE HAS SIGNAL\n");

if (*stat & FE_SPECTRUM_INV)
printf("SPEKTRUM INV\n");

return 0;
}

/* tune qpsk */
/* freq: frequency of transponder */
/* vpid, apid, tpid: PIDs of video, audio and teletext TS packets */
/* diseqc: DiSEqC address of the used LNB */
/* pol: Polarisation */
/* srate: Symbol Rate */
/* fec. FEC */
/* lnb_lof1: local frequency of lower LNB band */
/* lnb_lof2: local frequency of upper LNB band */
/* lnb_slof: switch frequency of LNB */

int set_qpsk_channel(int freq, int vpid, int apid, int tpid,
int diseqc, int pol, int srate, int fec, int lnb_lof1,
int lnb_lof2, int lnb_slof)

{
struct secCommand scmd;
struct secCmdSequence scmds;
struct dmx_pes_filter_params pesFilterParams;
FrontendParameters frp;
struct pollfd pfd[1];
FrontendEvent event;
int demux1, demux2, demux3, front;

frequency = (uint32_t) freq;
symbolrate = (uint32_t) srate;

if((front = open(FRONT,O_RDWR)) < 0){
perror("FRONTEND DEVICE: ");
return -1;

}

if((sec = open(SEC,O_RDWR)) < 0){
perror("SEC DEVICE: ");
return -1;

}

if (demux1 < 0){
if ((demux1=open(DMX, O_RDWR|O_NONBLOCK))

< 0){
perror("DEMUX DEVICE: ");

94

9.1. Tuning 95

return -1;
}

}

if (demux2 < 0){
if ((demux2=open(DMX, O_RDWR|O_NONBLOCK))

< 0){
perror("DEMUX DEVICE: ");
return -1;

}
}

if (demux3 < 0){
if ((demux3=open(DMX, O_RDWR|O_NONBLOCK))

< 0){
perror("DEMUX DEVICE: ");
return -1;

}
}

if (freq < lnb_slof) {
frp.Frequency = (freq - lnb_lof1);
scmds.continuousTone = SEC_TONE_OFF;

} else {
frp.Frequency = (freq - lnb_lof2);
scmds.continuousTone = SEC_TONE_ON;

}
frp.Inversion = INVERSION_AUTO;
if (pol) scmds.voltage = SEC_VOLTAGE_18;
else scmds.voltage = SEC_VOLTAGE_13;

scmd.type=0;
scmd.u.diseqc.addr=0x10;
scmd.u.diseqc.cmd=0x38;
scmd.u.diseqc.numParams=1;
scmd.u.diseqc.params[0] = 0xF0 | ((diseqc * 4) & 0x0F) |

(scmds.continuousTone == SEC_TONE_ON ? 1 : 0) |
(scmds.voltage==SEC_VOLTAGE_18 ? 2 : 0);

scmds.miniCommand=SEC_MINI_NONE;
scmds.numCommands=1;
scmds.commands=&scmd;
if (ioctl(sec, SEC_SEND_SEQUENCE, &scmds) < 0){

perror("SEC SEND: ");
return -1;

}

if (ioctl(sec, SEC_SEND_SEQUENCE, &scmds) < 0){
perror("SEC SEND: ");
return -1;

}

frp.u.qpsk.SymbolRate = srate;
frp.u.qpsk.FEC_inner = fec;

95

96 EXAMPLES

if (ioctl(front, FE_SET_FRONTEND, &frp) < 0){
perror("QPSK TUNE: ");
return -1;

}

pfd[0].fd = front;
pfd[0].events = POLLIN;

if (poll(pfd,1,3000)){
if (pfd[0].revents & POLLIN){

printf("Getting QPSK event\n");
if (ioctl(front, FE_GET_EVENT, &event)

== -EOVERFLOW){
perror("qpsk get event");
return -1;

}
printf("Received ");
switch(event.type){
case FE_UNEXPECTED_EV:

printf("unexpected event\n");
return -1;

case FE_FAILURE_EV:
printf("failure event\n");
return -1;

case FE_COMPLETION_EV:
printf("completion event\n");

}
}

}

pesFilterParams.pid = vpid;
pesFilterParams.input = DMX_IN_FRONTEND;
pesFilterParams.output = DMX_OUT_DECODER;
pesFilterParams.pes_type = DMX_PES_VIDEO;
pesFilterParams.flags = DMX_IMMEDIATE_START;
if (ioctl(demux1, DMX_SET_PES_FILTER, &pesFilterParams) < 0){

perror("set_vpid");
return -1;

}

pesFilterParams.pid = apid;
pesFilterParams.input = DMX_IN_FRONTEND;
pesFilterParams.output = DMX_OUT_DECODER;
pesFilterParams.pes_type = DMX_PES_AUDIO;
pesFilterParams.flags = DMX_IMMEDIATE_START;
if (ioctl(demux2, DMX_SET_PES_FILTER, &pesFilterParams) < 0){

perror("set_apid");
return -1;

}

96

9.2. The DVR device 97

pesFilterParams.pid = tpid;
pesFilterParams.input = DMX_IN_FRONTEND;
pesFilterParams.output = DMX_OUT_DECODER;
pesFilterParams.pes_type = DMX_PES_TELETEXT;
pesFilterParams.flags = DMX_IMMEDIATE_START;
if (ioctl(demux3, DMX_SET_PES_FILTER, &pesFilterParams) < 0){

perror("set_tpid");
return -1;

}

return has_signal(fds);
}

The program assumes that you are using a universal LNB and a standard DiSEqC
switch with up to 4 addresses. Of course, you could build in some more checking if
tuning was successful and maybe try to repeat the tuning process. Depending on the
external hardware, i.e. LNB and DiSEqC switch, and weather conditions this may be
necessary.

9.2 The DVR device
The following program code shows how to use the DVR device for recording.

#include <sys/ioctl.h>
#include <stdio.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <time.h>
#include <unistd.h>

#include <linux/dvb/dmx.h>
#include <linux/dvb/video.h>
#include <sys/poll.h>
#define DVR "/dev/dvb/adapter0/dvr1"
#define AUDIO "/dev/dvb/adapter0/audio1"
#define VIDEO "/dev/dvb/adapter0/video1"

#define BUFFY (188*20)
#define MAX_LENGTH (1024*1024*5) /* record 5MB */

/* switch the demuxes to recording, assuming the transponder is tuned */

/* demux1, demux2: file descriptor of video and audio filters */
/* vpid, apid: PIDs of video and audio channels */

int switch_to_record(int demux1, int demux2, uint16_t vpid, uint16_t apid)
{

struct dmx_pes_filter_params pesFilterParams;

97

98 EXAMPLES

if (demux1 < 0){
if ((demux1=open(DMX, O_RDWR|O_NONBLOCK))

< 0){
perror("DEMUX DEVICE: ");
return -1;

}
}

if (demux2 < 0){
if ((demux2=open(DMX, O_RDWR|O_NONBLOCK))

< 0){
perror("DEMUX DEVICE: ");
return -1;

}
}

pesFilterParams.pid = vpid;
pesFilterParams.input = DMX_IN_FRONTEND;
pesFilterParams.output = DMX_OUT_TS_TAP;
pesFilterParams.pes_type = DMX_PES_VIDEO;
pesFilterParams.flags = DMX_IMMEDIATE_START;
if (ioctl(demux1, DMX_SET_PES_FILTER, &pesFilterParams) < 0){

perror("DEMUX DEVICE");
return -1;

}
pesFilterParams.pid = apid;
pesFilterParams.input = DMX_IN_FRONTEND;
pesFilterParams.output = DMX_OUT_TS_TAP;
pesFilterParams.pes_type = DMX_PES_AUDIO;
pesFilterParams.flags = DMX_IMMEDIATE_START;
if (ioctl(demux2, DMX_SET_PES_FILTER, &pesFilterParams) < 0){

perror("DEMUX DEVICE");
return -1;

}
return 0;

}

/* start recording MAX_LENGTH , assuming the transponder is tuned */

/* demux1, demux2: file descriptor of video and audio filters */
/* vpid, apid: PIDs of video and audio channels */
int record_dvr(int demux1, int demux2, uint16_t vpid, uint16_t apid)
{

int i;
int len;
int written;
uint8_t buf[BUFFY];
uint64_t length;
struct pollfd pfd[1];
int dvr, dvr_out;

/* open dvr device */
if ((dvr = open(DVR, O_RDONLY|O_NONBLOCK)) < 0){

perror("DVR DEVICE");

98

9.2. The DVR device 99

return -1;
}

/* switch video and audio demuxes to dvr */
printf ("Switching dvr on\n");
i = switch_to_record(demux1, demux2, vpid, apid);
printf("finished: ");

printf("Recording %2.0f MB of test file in TS format\n",
MAX_LENGTH/(1024.0*1024.0));

length = 0;

/* open output file */
if ((dvr_out = open(DVR_FILE,O_WRONLY|O_CREAT

|O_TRUNC, S_IRUSR|S_IWUSR
|S_IRGRP|S_IWGRP|S_IROTH|
S_IWOTH)) < 0){

perror("Can’t open file for dvr test");
return -1;

}

pfd[0].fd = dvr;
pfd[0].events = POLLIN;

/* poll for dvr data and write to file */
while (length < MAX_LENGTH) {

if (poll(pfd,1,1)){
if (pfd[0].revents & POLLIN){

len = read(dvr, buf, BUFFY);
if (len < 0){

perror("recording");
return -1;

}
if (len > 0){

written = 0;
while (written < len)

written +=
write (dvr_out,

buf, len);
length += len;
printf("written %2.0f MB\r",

length/1024./1024.);
}

}
}

}
return 0;

}

99

100 EXAMPLES

100

101

Appendix A

GNU Free Documentation
License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is not
limited to software manuals; it can be used for any textual work, regardless of sub-
ject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

A.1 Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.

101

102 GNU FREE DOCUMENTATION LICENSE

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains noth-
ing that could fall directly within that overall subject. (For example, if the Document
is in part a textbook of mathematics, a Secondary Section may not explain any mathe-
matics.) The relationship could be a matter of historical connection with the subject or
with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the Document is
released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, whose con-
tents can be viewed and edited directly and straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup has been designed
to thwart or discourage subsequent modification by readers is not Transparent. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LATEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifi-
cation. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A.2 Verbatim Copying
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

102

A.3. Copying in Quantity 103

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

A.3 Copying in Quantity
If you publish printed copies of the Document numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other mate-
rial on the covers in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-
network location containing a complete Transparent copy of the Document, free of
added material, which the general network-using public has access to download anony-
mously at no charge using public-standard network protocols. If you use the latter op-
tion, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

A.4 Modifications
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under pre-
cisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

• List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has
less than five).

103

104 GNU FREE DOCUMENTATION LICENSE

• State on the Title page the name of the publisher of the Modified Version, as the
publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

• Include, immediately after the copyright notices, a license notice giving the pub-
lic permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled “History”, and its title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

• Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed in
the “History” section. You may omit a network location for a work that was pub-
lished at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

• In any section entitled “Acknowledgements” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

• Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

• Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qual-
ify as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties – for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

104

A.5. Combining Documents 105

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Document
already includes a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give per-
mission to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

A.5 Combining Documents
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple iden-
tical Invariant Sections may be replaced with a single copy. If there are multiple In-
variant Sections with the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name of the original au-
thor or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any sections entitled “History” in the vari-
ous original documents, forming one section entitled “History”; likewise combine any
sections entitled “Acknowledgements”, and any sections entitled “Dedications”. You
must delete all sections entitled “Endorsements.”

A.6 Collections of Documents
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

A.7 Aggregation With Independent Works
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation

105

106 GNU FREE DOCUMENTATION LICENSE

copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Doc-
ument, then if the Document is less than one quarter of the entire aggregate, the Docu-
ment’s Cover Texts may be placed on covers that surround only the Document within
the aggregate. Otherwise they must appear on covers around the whole aggregate.

A.8 Translation

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

A.9 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

A.10 Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License ”or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

106

A.10. Future Revisions of This License 107

ADDENDUM: How to use this License for your docu-
ments
To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title
page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being LIST THEIR
TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover
Texts being LIST. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of say-
ing which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover
Texts” instead of “Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.

107

108 GNU FREE DOCUMENTATION LICENSE

108

	Introduction
	What you need to know
	History
	Overview
	Linux DVB Devices
	API include files

	DVB Frontend API
	Frontend Data Types
	frontend type
	frontend capabilities
	frontend information
	diseqc master command
	diseqc slave reply
	SEC voltage
	SEC continuous tone
	SEC tone burst
	frontend status
	frontend parameters
	frontend events

	Frontend Function Calls
	open()
	close()
	FE_READ_STATUS
	FE_READ_BER
	FE_READ_SNR
	FE_READ_SIGNAL_STRENGTH
	FE_READ_UNCORRECTED_BLOCKS
	FE_SET_FRONTEND
	FE_GET_FRONTEND
	FE_GET_EVENT
	FE_GET_INFO
	FE_DISEQC_RESET_OVERLOAD
	FE_DISEQC_SEND_MASTER_CMD
	FE_DISEQC_RECV_SLAVE_REPLY
	FE_DISEQC_SEND_BURST
	FE_SET_TONE
	FE_SET_VOLTAGE
	FE_ENABLE_HIGH_LNB_VOLTAGE

	DVB Demux Device
	Demux Data Types
	dmx_output_t
	dmx_input_t
	dmx_pes_type_t
	dmx_event_t
	dmx_scrambling_status_t
	struct dmx_filter
	struct dmx_sct_filter_params
	struct dmx_pes_filter_params
	struct dmx_event
	struct dmx_stc

	Demux Function Calls
	open()
	close()
	read()
	write()
	DMX_START
	DMX_STOP
	DMX_SET_FILTER
	DMX_SET_PES_FILTER
	DMX_SET_BUFFER_SIZE
	DMX_GET_EVENT
	DMX_GET_STC

	DVB Video Device
	Video Data Types
	video_format_t
	video_display_format_t
	video stream source
	video play state
	struct video_event
	struct video_status
	struct video_still_picture
	video capabilities
	video system
	struct video_highlight
	video SPU
	video SPU palette
	video NAVI pack
	video attributes

	Video Function Calls
	open()
	close()
	write()
	VIDEO_STOP
	VIDEO_PLAY
	VIDEO_FREEZE
	VIDEO_CONTINUE
	VIDEO_SELECT_SOURCE
	VIDEO_SET_BLANK
	VIDEO_GET_STATUS
	VIDEO_GET_EVENT
	VIDEO_SET_DISPLAY_FORMAT
	VIDEO_STILLPICTURE
	VIDEO_FAST_FORWARD
	VIDEO_SLOWMOTION
	VIDEO_GET_CAPABILITIES
	VIDEO_SET_ID
	VIDEO_CLEAR_BUFFER
	VIDEO_SET_STREAMTYPE
	VIDEO_SET_FORMAT
	VIDEO_SET_SYSTEM
	VIDEO_SET_HIGHLIGHT
	VIDEO_SET_SPU
	VIDEO_SET_SPU_PALETTE
	VIDEO_GET_NAVI
	VIDEO_SET_ATTRIBUTES

	DVB Audio Device
	Audio Data Types
	audio_stream_source_t
	audio_play_state_t
	audio_channel_select_t
	struct audio_status
	struct audio_mixer
	audio encodings
	struct audio_karaoke
	audio attributes

	Audio Function Calls
	open()
	close()
	write()
	AUDIO_STOP
	AUDIO_PLAY
	AUDIO_PAUSE
	AUDIO_SELECT_SOURCE
	AUDIO_SET_MUTE
	AUDIO_SET_AV_SYNC
	AUDIO_SET_BYPASS_MODE
	AUDIO_CHANNEL_SELECT
	AUDIO_GET_STATUS
	AUDIO_GET_CAPABILITIES
	AUDIO_CLEAR_BUFFER
	AUDIO_SET_ID
	AUDIO_SET_MIXER
	AUDIO_SET_STREAMTYPE
	AUDIO_SET_EXT_ID
	AUDIO_SET_ATTRIBUTES
	AUDIO_SET_KARAOKE

	DVB CA Device
	CA Data Types
	ca_slot_info_t
	ca_descr_info_t
	ca_cap_t
	ca_msg_t
	ca_descr_t

	CA Function Calls
	open()
	close()

	DVB Network API
	DVB Net Data Types

	Kernel Demux API
	Kernel Demux Data Types
	dmx_success_t
	TS filter types
	dmx_ts_pes_t
	demux_demux_t
	Demux directory

	Demux Directory API
	dmx_register_demux()
	dmx_unregister_demux()
	dmx_get_demuxes()

	Demux API
	open()
	close()
	write()
	allocate_ts_feed()
	release_ts_feed()
	allocate_section_feed()
	release_section_feed()
	descramble_mac_address()
	descramble_section_payload()
	add_frontend()
	remove_frontend()
	get_frontends()
	connect_frontend()
	disconnect_frontend()

	Demux Callback API
	dmx_ts_cb()
	dmx_section_cb()

	TS Feed API
	set()
	start_filtering()
	stop_filtering()

	Section Feed API
	set()
	allocate_filter()
	release_filter()
	start_filtering()
	stop_filtering()

	Examples
	Tuning
	The DVR device

	GNU Free Documentation License
	Applicability and Definitions
	Verbatim Copying
	Copying in Quantity
	Modifications
	Combining Documents
	Collections of Documents
	Aggregation With Independent Works
	Translation
	Termination
	Future Revisions of This License

