Android camera HAL v3 and Video4Linux 2

Sakari Ailus
<sakari.ailus@linux.intel.com>
2014-10-15
Android camera HAL v1

- Modelled against a digital camera
- Three modes
 - Preview
 - Still capture
 - Video
Android camera HAL v3

- Very much not like v1
- Not evolution based on v1
- This is an entirely new API
- Forget what you knew about v1
Android camera HAL v3

• Based on capture requests, each of which translate to a captured image in one or more buffers
 – The full capture configuration is part of the request
• User queues capture requests to the device and receives completed requests back later on
HAL v3 image pipeline model

source: Google [2]
ISP configuration

- Hardware ISPs have low level image processing configuration
 - Lens shading compensation tables
 - Black level correction
 - Linearisation
 - Colour space conversion (RGB to YUV)
 - Statistics configuration (e.g. windows of interest --- location and size)
- This is per-frame configuration, and part of the capture request
ISP configuration, continued

- The omap3isp driver implements a number of private IOCTLs to implement passing statistics to the user space.
- But the functionality is essentially the same as video buffer queues already do.
- Discussion in ~ 2010 ended up with a recommendation to use video buffer queues for statistics.
 - The statistics formats are device specific.
 - Private IOCTL?
 - No implementation yet.
3A library

- **Input**
 - Exposure and white balance statistics
 - Histogram
 - Frame metadata

- **Output**
 - Sensor exposure time and gain
 - ISP parameters
3A control loop

- Sensor
 - Exposure time, gain
- 3A library
 - ISP parameters
 - Frame metadata, image statistics
- ISP
 - Images, frame metadata
3A control loop

3A library + hal

kernel + hardware

3A control loop

frame received (EoF)

metadata

exposure time

ISP

parameters

parameters applied after SoF of frame n + 1 applied to frame n + 3!
Capture requests

- A capture request is about a single frame
 - At most one buffer per stream
- Practical implementations have multiple DMA engines to write the buffers into memory
 - Multiple video buffer queues
- Exactly the same buffers must be returned to the user than were in the capture request
Capture requests

- Include **all** parameters related to capturing a frame, including that calculated by the 3A library
 - ISP configuration
 - Lens shading tables
 - Bayer to GRB conversion parameters
 - Sensor exposure time and gain
 - Lens focus value
Metadata tags

• A metadata tag consists of a single or an array of integer or floating point number(s)
 – Much like controls in V4L2

• A set of metadata tags is related to a single capture request
Metadata tags

- Metadata tags are consumed by HAL
 - HAL configuration
 - 3A library configuration
 - E.g. AWB mode
 - Indirect effects on hardware configuration
- Or produced by HAL
 - Hardware produced statistics conversion to a hardware independent format
 - Such as the histogram
Device usage flow from camera framework towards HAL

1. Open the device.
 camera_module_t.common->open()

2. camera3_device_t->ops->initialize()

3. Configure the streams.
 camera3_device_t->configure_streams()

4. Allocate stream buffers.
 camera3_device_t->ops->register_stream_buffers()
Device usage flow, continued

5. Construct a capture request and send it to HAL.
 camera3_device_t->ops->process_capture_request()

6. HAL notifies the framework of a started capture request.
 camera3_callback_ops->notify()

7. HAL notifies the framework of a finished capture request.
 camera3_callback_ops->process_capture_result()

8. Jump back to 5 or continue.

9. camera3_device_t->common->close() may be called to close the device.
Capture requests, HAL and V4L2

1Image statistics (AEWB, histogram and AF) and image metadata from the sensor
Capture requests vs. video buffers

V4L2
/dev/video0
/dev/video1

Android camera HAL v3
camera3_device_t
Capture requests and video buffer queues

- There's no standard way in V4L2 to queue multiple buffers to independent video buffer queues with the guarantee of capturing the frame from a single image
 - Not all capture requests come with a buffer for every stream
- The sensor and lens devices already depend on timing
 - Still unreliable and difficult to implement for video buffers
- A new video buffer flag could be used to signal not to pass the buffer to the device yet
 - E.g. V4L2_BUF_FLAG_POSTPONE
- Together with the sequence number
Capture requests and video buffer queues

- No guarantee on buffer ordering in V4L2, but individual drivers could guarantee this
 - A small piece in the puzzle, so probably not worth spending much attention now

- Buffer index can be used to connect buffers related to a queued request to those that are dequeued by HAL
References

[3]https://android.googlesource.com/platform/hardware/libhardware/+/master/include/hardware/camera3.h