KWorld ATSC 120: Difference between revisions

From LinuxTVWiki
Jump to navigation Jump to search
(→‎External Links: adding reciprocating link back to mythtv kworld 120 page)
Line 71: Line 71:
====Step by Step====
====Step by Step====


'''1. Getting started'''
'''1. Getting Started'''


* If you have a set of speakers, headphones, or another audio device connected to the card's audio output jack, you will need to disconnect it. The driver has a few minor bugs, one of which causes the audio output to be somewhat unpredictable. Instead, we will use the internal digital audio feeds that the card provides.
* If you have a set of speakers, headphones, or another audio device connected to the card's audio output jack (the green connector on the harness), you will need to disconnect it. The driver has a few minor bugs, one of which causes the audio output to be somewhat unpredictable. Instead, we will use the internal digital audio feeds that the card provides.

''If your distribution already uses a generic 2.6.26 (or later) kernel and you wish to stick with that kernel, most likely everything has already been configured properly. Please skip all the build/install information below and go to step 3.''


* Create a work directory and change to it. When everything is said and done, one can clean up by simply deleting the work directory (and everything in it).
* Create a work directory and change to it. When everything is said and done, one can clean up by simply deleting the work directory (and everything in it).


* Download the "latest stable version" of the Linux kernel from [http://www.kernel.org The Linux Kernel Archive] (look for the "F" link on the right in the first kernel line). Switch to your work directory and extract the kernel archive.
'''2. Install a Kernel'''


'''2. Configure and Install a Kernel'''
:''If your distribution already uses a generic 2.6.26 (or later) kernel, most likely everything has already been configured properly. Please skip to step 4.''


* Download the "latest stable version" of the Linux kernel from [http://www.kernel.org The Linux Kernel Archive] (look for the "F" link on the right in the first kernel line). Instructions for configuring, compiling, and installing a Linux kernel can be found in [http://www.cromwell-intl.com/unix/linux-kernel.html this How-to]. If your distribution provides a means and instructions for doing this via their official software repositories, it is recommended that you use their method instead.
* Instructions for configuring, compiling, and installing a Linux kernel can be found in [http://www.cromwell-intl.com/unix/linux-kernel.html this How-to]. If your distribution provides an official method for doing this (as part of a tutorial, perhaps), it is recommended that you consult with their documentation from time to time, just to make sure you don't skip a step that is critical to your particular distribution.


* During the configuration step, you will need to eventually navigate to Device Drivers -> Multimedia devices, and find the "Video for Linux" and "DVB for Linux" trees. There are two possible things to do here:
* Within the kernel configuration program, navigate to Device Drivers ---> Multimedia devices (about three pages down), and find the "Video for Linux" and "DVB for Linux" trees. There are two routes to take from here...


Option A: Using a 2.6.26 or newer kernel with the in-kernel driver code
:* If you chose a kernel older than 2.6.26, turn these two trees off (press "N" on both).


:Enter into the Multimedia Devices menu and make the following changes:
:* For 2.6.26 and newer kernels, turn these two trees on as modules (press "M" on both), then turn the following options on as modules where possible:


<blockquote><blockquote><pre>
<blockquote><pre>
Device Drivers --->
Device Drivers --->
Multimedia devices --->
Multimedia devices --->
Line 102: Line 104:
Customise DVB Frontends --->
Customise DVB Frontends --->
<M> Samsung S5H1409 based
<M> Samsung S5H1409 based
</pre></blockquote></blockquote>
</pre></blockquote>


Option B: Using any recent kernel with the v4l-dvb repository
* Continue exploring, configuring, etc. at your discretion. When you are finished, exit from the config editor and let it save the new configuration.


* Turn the "Video for Linux" and "DVB for Linux" trees off entirely. That is, cursor to and press "N" on each one.
* Return to the aforementioned how-to to build and install your new kernel, and to prepare your system to reboot with it. Once you've rebooted, be sure '''everything''' else on your system works properly before continuing.

* There is a minor bug in the way the cx88-alsa module communicates with the kernel's I2C driver - out-of-kernel drivers have trouble connecting to it (code-wise that is). To work around this, go back up to the Device Drivers menu and find "I2C support". Make these changes:

<blockquote><pre>
Device Drivers --->
<M> I2C support --->
<M> I2C device interface
[ ] Autoselect pertinent helper modules {That is, press "N" to turn this item off entirely.}
I2C Algorithms --->
<M> I2C bit-banging interfaces
</pre></blockquote>


::Also browse the "I2C Hardware Bus support" and "Miscellaneous I2C Chip support" menus and make sure the I2C drivers for your hardware (if any) are turned on, as modules.
'''3. Install the V4L-DVB repository'''


* Acquire the v4l-dvb repository from linuxtv.org, build, and install it using the following commands as root (the exact figures, marked out with X's below, will change over time as the repository is updated):
''2.6.26 and newer kernels already have the current v4l-dvb code in them. If you're using one of these, skip to step 4.''
* Acquire Mercurial and install it. This can probably be found in your distribution's software repository.


* Acquire the v4l-dvb repository from linuxtv.org, build, and install it (the exact figures below will change over time, as the repository is updated):
<blockquote><pre>
<blockquote><pre>
# hg clone http://linuxtv.org/hg/v4l-dvb
# hg clone http://linuxtv.org/hg/v4l-dvb
Line 122: Line 133:
adding manifests
adding manifests
adding file changes
adding file changes
added 8567 changesets with 22668 changes to 1556 files
added XXXX changesets with XXXXX changes to XXXX files
updating working directory
updating working directory
1138 files updated, 0 files merged, 0 files removed, 0 files unresolved
XXXX files updated, XX files merged, XX files removed, XX files unresolved
# cd v4l-dvb
# cd v4l-dvb
Line 134: Line 145:
</pre></blockquote>
</pre></blockquote>


After you've done either option "A" or option "B", you may continue exploring, configuring, etc. at your discretion, according to your hardware's needs and functionality. When you are finished, exit from the configuration program and let it save the new configuration file.
'''4. Set up the drivers'''

* Return to the aforementioned how-to to build and install your new kernel, and to prepare your system to reboot with it. Usually, this requires only a "make install" command, followed by editing your LILO or GRUB configuration to recognize the new kernel. Once you've rebooted, be sure '''everything''' else on your system works properly before continuing.

'''3. Set up the drivers'''


* Acquire the xc3028 firmware file and place it in /lib/firmware , as directed by [[Xceive XC3028/XC2028| the XC3028/2028 info page]] here on the LinuxTV wiki.
* Acquire the xc3028 firmware file and place it in /lib/firmware , as directed by [[Xceive XC3028/XC2028| the XC3028/2028 info page]] here on the LinuxTV wiki.
Line 156: Line 171:
# nano /etc/rc.local
# nano /etc/rc.local


mv /etc/modprobe.d/blacklist-misc /tmp
mv /etc/modprobe.d/blacklist-misc /root
modprobe cx88-dvb
modprobe cx88-dvb
mv /tmp/blacklist-misc /etc/modprobe.d
cp /root/blacklist-misc /etc/modprobe.d
</pre></blockquote></blockquote>
</pre></blockquote></blockquote>


:::Here, we move the blacklist file off to /tmp to temporarily disable it, load the modules, then put the blacklist back into place so that it works for the next reboot. Skipping the move commands will cause the modprobe command to fail in many systems.
:::Here, we move the blacklist file off to root's home directory to temporarily disable it (and to create a backup copy), load the modules, then put the blacklist back into place so that it works for the next reboot. Skipping the move commands will cause the modprobe command to fail in many systems.


:* To make Analog mode the default, do this instead:
:* To make Analog mode the default, do this instead:
Line 168: Line 183:
# nano /etc/rc.local
# nano /etc/rc.local


mv /etc/modprobe.d/blacklist-misc /tmp
mv /etc/modprobe.d/blacklist-misc /root
modprobe cx8800
modprobe cx8800
modprobe cx88-alsa
modprobe cx88-alsa
mv /tmp/blacklist-misc /etc/modprobe.d
cp /root/blacklist-misc /etc/modprobe.d
</pre></blockquote></blockquote>
</pre></blockquote></blockquote>


:If there is an "exit 0" or similar command in the script, be sure your changes precede it.
:::If there is an "exit 0" or similar command in the script, be sure your changes precede it.


'''5. Reboot and test'''
'''4. Reboot and test'''


* As the title of this section says, it is time to reboot the computer and make sure the computer loaded the modules appropriate for the mode you chose above. The easiest way for the non-technical user is to fire up a TV program. and see what happens.
* As the title of this section says, it is time to reboot the computer and make sure the computer loaded the modules appropriate for the mode you chose above. The easiest way for the non-technical user is to fire up a TV program. and see what happens.


:* For analog mode, programs such as Xawtv, TVtime, KDETV and similar will work as a quick test. The internal audio feed provided by the cx88-alsa driver is not recognized by these programs, so if you wish to check the sound as well, you'll need to use "sox" or a similar program stream the audio from /dev/dsp1 back to your system's audio device (e.g. /dev/dsp with no number) while your chosen TV program handles the video display. MythTV is one exception to this rule - it handles this internal audio feed properly.
:* For analog mode, programs such as Xawtv, TVtime, KDETV and similar will work as a quick test. The internal audio feed provided by the cx88-alsa driver is not recognized by these programs, so if you wish to check the sound as well, you'll need to use "sox" to forward the audio stream to your sound card. Something like this should work:

<blockquote><pre>xawtv -noxv & sox -w -r 48000 -t ossdsp /dev/dsp1 -t ossdsp /dev/dsp</pre></blockquote>

:*MythTV is an exception to this rule - it knows how to handle the separate audio stream properly, when so configured.


:* For digital mode, use MythTV or XINE. If you chose MythTV, be sure you configure your system to start the MythTV backend after the modules above have been loaded, perhaps by editing the above "rc.local" script to explicitly terminate and restart it after the "modprobe" and "mv" commands. Not doing so will cause the backend to fail to sense the presence of the driver and the video/audio devices it creates.
:* For digital mode, use MythTV or XINE. If you chose MythTV, be sure you configure your system to start the MythTV backend after the modules above have been loaded, perhaps by editing the above "rc.local" script and adding commands to explicitly terminate and restart it after the "modprobe" and "mv" commands. Not doing so will cause the backend to fail to sense the presence of the driver and the video/audio devices it creates.


* Your capture card should now be ready to use.
* Your capture card should now be ready to use.

Revision as of 03:35, 29 March 2009

An ATSC PCI card from KWorld.

It is supported under Linux since kernel 2.6.26 [1]. For older kernels, detailed setup instructions can be found below.

Overview/Feature

The Kworld ATSC 120, also known as the KWorld PlusTV HD PCI 120, can receive standard analog television signals (NTSC, PAL, possibly others), as well as standard and high definition digital ATSC broadcasts up to 1920x1080 interlaced.

The ATSC 120 features composite and s-video inputs, an analog FM radio, and an infrared remote control. Television and FM radio audio may be received via an internal PCI/DMA device that is handled by ALSA (e.g. as /dev/dsp1), and via a line-out connector on the back of the card.

This device is identical to the Geniatech HDTV Thriller X8000A.

Note: This article is a work in progress.

Status

As of 27 Mar 2008 and revision 7448 of the main v4l-dvb repository, this card can be used in both analog and digital ATSC modes via a set of experimental drivers. The FM radio, composite video, and S-Video inputs all work when the card is initialized into analog mode. Due to a resource conflict in the driver caused by this card's architecture, a reboot is necessary to switch between analog and ATSC modes. The cause of this issue has been located, and work is ongoing to fix it.

The remote control is not currently supported in any mode, yet.

The Line-out jack is somewhat functional, but is not considered ready to use, yet.

PCI Information

The ATSC 120 has a PCI subsytem ID of 17de:08c1. The complete details of this card, as reported by lspci -vvnn are:

00:05.0 Multimedia video controller [0400]: Conexant CX23880/1/2/3 PCI Video and Audio Decoder [14f1:8800] (rev 05)
        Subsystem: KWorld Computer Co. Ltd. Unknown device [17de:08c1]
        Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV+ VGASnoop- ParErr- Stepping- SERR+ FastB2B-
        Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR-
        Latency: 64 (5000ns min, 13750ns max), Cache Line Size: 64 bytes
        Interrupt: pin A routed to IRQ 21
        Region 0: Memory at fa000000 (32-bit, non-prefetchable) [size=16M]
        Capabilities: [44] Vital Product Data
        Capabilities: [4c] Power Management version 2
                Flags: PMEClk- DSI+ D1- D2- AuxCurrent=0mA PME(D0-,D1-,D2-,D3hot-,D3cold-)
                Status: D0 PME-Enable- DSel=0 DScale=0 PME-

00:05.1 Multimedia controller [0480]: Conexant CX23880/1/2/3 PCI Video and Audio Decoder [Audio Port] [14f1:8801] (rev 05)
        Subsystem: KWorld Computer Co. Ltd. Unknown device [17de:08c1]
        Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV+ VGASnoop- ParErr- Stepping- SERR+ FastB2B-
        Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR-
        Latency: 64 (1000ns min, 63750ns max), Cache Line Size: 64 bytes
        Interrupt: pin A routed to IRQ 21
        Region 0: Memory at fb000000 (32-bit, non-prefetchable) [size=16M]
        Capabilities: [4c] Power Management version 2
                Flags: PMEClk- DSI+ D1- D2- AuxCurrent=0mA PME(D0-,D1-,D2-,D3hot-,D3cold-)
                Status: D0 PME-Enable- DSel=0 DScale=0 PME-

00:05.2 Multimedia controller [0480]: Conexant CX23880/1/2/3 PCI Video and Audio Decoder [MPEG Port] [14f1:8802] (rev 05)
        Subsystem: KWorld Computer Co. Ltd. Unknown device [17de:08c1]
        Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV+ VGASnoop- ParErr- Stepping- SERR+ FastB2B-
        Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR-
        Latency: 64 (1500ns min, 22000ns max), Cache Line Size: 64 bytes
        Interrupt: pin A routed to IRQ 21
        Region 0: Memory at fc000000 (32-bit, non-prefetchable) [size=16M]
        Capabilities: [4c] Power Management version 2
                Flags: PMEClk- DSI+ D1- D2- AuxCurrent=0mA PME(D0-,D1-,D2-,D3hot-,D3cold-)
                Status: D0 PME-Enable- DSel=0 DScale=0 PME-

Major components used

  • Xceive XC3028 (tuner & analog IF demodulator)
  • Samsung S5H1409 (digital demodulator, Conexant CX24227 compatible)
  • Conexant cx23880 (A/V Decoder & PCI bridge)

Making it Work

For kernels prior to 2.6.26, the ATSC 120 is still a fairly routine card to set up, and selecting the desired default mode is accomplished by simply loading the proper module after a reboot.

Step by Step

1. Getting Started

  • If you have a set of speakers, headphones, or another audio device connected to the card's audio output jack (the green connector on the harness), you will need to disconnect it. The driver has a few minor bugs, one of which causes the audio output to be somewhat unpredictable. Instead, we will use the internal digital audio feeds that the card provides.

If your distribution already uses a generic 2.6.26 (or later) kernel and you wish to stick with that kernel, most likely everything has already been configured properly. Please skip all the build/install information below and go to step 3.

  • Create a work directory and change to it. When everything is said and done, one can clean up by simply deleting the work directory (and everything in it).
  • Download the "latest stable version" of the Linux kernel from The Linux Kernel Archive (look for the "F" link on the right in the first kernel line). Switch to your work directory and extract the kernel archive.

2. Configure and Install a Kernel

  • Instructions for configuring, compiling, and installing a Linux kernel can be found in this How-to. If your distribution provides an official method for doing this (as part of a tutorial, perhaps), it is recommended that you consult with their documentation from time to time, just to make sure you don't skip a step that is critical to your particular distribution.
  • Within the kernel configuration program, navigate to Device Drivers ---> Multimedia devices (about three pages down), and find the "Video for Linux" and "DVB for Linux" trees. There are two routes to take from here...

Option A: Using a 2.6.26 or newer kernel with the in-kernel driver code

Enter into the Multimedia Devices menu and make the following changes:
 Device Drivers  ---> 
   Multimedia devices  --->
     <M> Video For Linux
     <M> DVB for Linux
     [*] Video capture adapters (NEW)  --->
         [*]   Autoselect pertinent encoders/decoders and other helper chips
         <M>   Conexant 2388x (bt878 successor) support
         <M>     Conexant 2388x DMA audio support
         <M>     DVB/ATSC Support for cx2388x based TV cards
     [*] DVB/ATSC adapters (NEW)  --->
         Customise DVB Frontends  --->
            <M> Samsung S5H1409 based

Option B: Using any recent kernel with the v4l-dvb repository

  • Turn the "Video for Linux" and "DVB for Linux" trees off entirely. That is, cursor to and press "N" on each one.
  • There is a minor bug in the way the cx88-alsa module communicates with the kernel's I2C driver - out-of-kernel drivers have trouble connecting to it (code-wise that is). To work around this, go back up to the Device Drivers menu and find "I2C support". Make these changes:
 Device Drivers --->
   <M> I2C support  --->
     <M>   I2C device interface
     [ ]   Autoselect pertinent helper modules    {That is, press "N" to turn this item off entirely.}
             I2C Algorithms  ---> 
               <M> I2C bit-banging interfaces
Also browse the "I2C Hardware Bus support" and "Miscellaneous I2C Chip support" menus and make sure the I2C drivers for your hardware (if any) are turned on, as modules.
  • Acquire the v4l-dvb repository from linuxtv.org, build, and install it using the following commands as root (the exact figures, marked out with X's below, will change over time as the repository is updated):
  # hg clone http://linuxtv.org/hg/v4l-dvb
  
  destination directory: v4l-dvb
  requesting all changes
  adding changesets
  adding manifests
  adding file changes
  added XXXX changesets with XXXXX changes to XXXX files
  updating working directory
  XXXX files updated, XX files merged, XX files removed, XX files unresolved
  
  # cd v4l-dvb
  # make
...various build messages will appear here. Watch the first screen full of the output carefully and take note of the version of the kernel that the v4l-dvb repository is being built against - it must state that it is using the new kernel you just installed.
  # make install

After you've done either option "A" or option "B", you may continue exploring, configuring, etc. at your discretion, according to your hardware's needs and functionality. When you are finished, exit from the configuration program and let it save the new configuration file.

  • Return to the aforementioned how-to to build and install your new kernel, and to prepare your system to reboot with it. Usually, this requires only a "make install" command, followed by editing your LILO or GRUB configuration to recognize the new kernel. Once you've rebooted, be sure everything else on your system works properly before continuing.

3. Set up the drivers

  • Acquire the xc3028 firmware file and place it in /lib/firmware , as directed by the XC3028/2028 info page here on the LinuxTV wiki.
  • In order to have more precise control of what modules get loaded, and exactly when, create a new file to blacklist the new modules from being auto-loaded:
  # nano /etc/modprobe.d/blacklist-misc

  blacklist cx8800
  blacklist cx8802
  blacklist cx88-alsa
  blacklist cx88-dvb
  • Save the file out. If so desired, reboot your system and do an lsmod, to verify if the drivers were successfully blacklisted.
  • Decide which mode you wish to use as the default: NTSC and the various analog sources, or digital/ATSC mode.
  • To make digital/ATSC the default (for Debian, Ubuntu, and similar):
  # nano /etc/rc.local

  mv /etc/modprobe.d/blacklist-misc /root
  modprobe cx88-dvb
  cp /root/blacklist-misc /etc/modprobe.d
Here, we move the blacklist file off to root's home directory to temporarily disable it (and to create a backup copy), load the modules, then put the blacklist back into place so that it works for the next reboot. Skipping the move commands will cause the modprobe command to fail in many systems.
  • To make Analog mode the default, do this instead:
  # nano /etc/rc.local

  mv /etc/modprobe.d/blacklist-misc /root
  modprobe cx8800
  modprobe cx88-alsa
  cp /root/blacklist-misc /etc/modprobe.d
If there is an "exit 0" or similar command in the script, be sure your changes precede it.

4. Reboot and test

  • As the title of this section says, it is time to reboot the computer and make sure the computer loaded the modules appropriate for the mode you chose above. The easiest way for the non-technical user is to fire up a TV program. and see what happens.
  • For analog mode, programs such as Xawtv, TVtime, KDETV and similar will work as a quick test. The internal audio feed provided by the cx88-alsa driver is not recognized by these programs, so if you wish to check the sound as well, you'll need to use "sox" to forward the audio stream to your sound card. Something like this should work:
xawtv -noxv & sox -w -r 48000 -t ossdsp /dev/dsp1 -t ossdsp /dev/dsp
  • MythTV is an exception to this rule - it knows how to handle the separate audio stream properly, when so configured.
  • For digital mode, use MythTV or XINE. If you chose MythTV, be sure you configure your system to start the MythTV backend after the modules above have been loaded, perhaps by editing the above "rc.local" script and adding commands to explicitly terminate and restart it after the "modprobe" and "mv" commands. Not doing so will cause the backend to fail to sense the presence of the driver and the video/audio devices it creates.
  • Your capture card should now be ready to use.

External Links