Eb/N0

From LinuxTVWiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The term Eb/N0 ("e bee over en zero") is used in digital communications as a measure of signal strength to estimate the bit error rate.

It is defined as the average energy per bit (Eb) relative to the spectral noise density (N0) and gives a basic measure how strong the signal is at the receivers input.

The definition assumes that inside the channels bandwidth B the Gaussian distributed noise energy can be calculated as N0 = k*T*B (may be additionally shaped by filters), where k is Boltzmann's constant and T is absolute temperature in Kelvin.

With the knowlegde of modulation and Eb/N0 one can estimate the available BER or vice versa calculate the RF power for a given data set of modulation, channel bandwidth, symbol rate, losses and wanted bit error rate. Eb/N0 gives also modulation choices for a channel depending on wether bandwidth (i.e. cable TV) or power (i.e. sat) is the limiting factor.

Using Eb/N0 in logarithmic scale

In datasheets Eb/N0 is usually scaled in dB. As Eb/N0 relates to power and spectral power density, use

Eb/N0_dB = 10 * log10(Eb/N0)

NOTE: If using dB, in formulas multiplication turns to addition and division turns to subtraction.


Relation to CNR

C/N = Eb/N0 * fb/B

fb : bit rate at receiver B  : channel noise bandwidth

Relation to SNR

S/N = Eb/N0 * Rb/B
Rb : bit rate
B  : channel bandwidth

Estimated BER vs Eb/N0 for a few modulations

est_BER_vs_EbN0.png

NOTE: Eb/N0 in logarithmic scale here.